THE WELCH COMPANY
440 Davis Court #1602
San Francisco, CA 94111-2496
415 781 5700
rod@welchco.com
S U M M A R Y
DIARY: December 14, 2018 12:38 PM Friday;
Rod Welch
Telomeres enable longevity and lengthened by exercise, conflicting evidence.
1...Summary/Objective
........Telomeres, Aging and Exercise: Guilty by Association?
ACTION ITEMS..................
Click here to comment!
1...What does "chornic inflammation" mean - how is it achieved,
CONTACTS
SUBJECTS
Article Aging and Atherosclerosis American Heart Association Circula
0703 -
0703 - ..
0704 - Summary/Objective
0705 -
070501 - Follow up ref SDS 3 0000. ref SDS 2 0000.
070502 -
070503 - More research indicates evidence is weak on telomere length signaling
070504 - biological age differences with chronological aging.
070505 -
070506 -
070507 -
070508 -
070509 -
070511 - ..
0706 -
0707 -
0708 - Progress
0709 -
070901 - Article today...
070902 -
070903 - PMC
070904 - US national Library Of Medicine
070905 - National Institutes of Health
070907 - ..
070908 - Journal List > Int J Mol Sci > v.18(12); 2017 Dec > PMC5751176
070909 -
070910 - https://www.ncbi.nlm.nih.gov/pmc/journals/
070911 -
070912 - https://www.ncbi.nlm.nih.gov/pmc/journals/808/
070913 -
070914 - https://www.ncbi.nlm.nih.gov/pmc/issues/303931/
070916 - ..
070917 - International journal of Molecular Sciences (MDPI)
070919 - ..
070920 - Int J Mol Sci. 2017 Dec; 18(12): 2573
070922 - ..
070923 - PMCID: PMC5751176
070924 - PMID: 29186077
070926 - ..
070927 - Published online 2017 Nov 29. doi: [10.3390/ijms18122573]
070928 -
070929 - https://www.mdpi.com/1422-0067/18/12/2573
070930 -
070932 - ..
070933 - Telomeres, Aging and Exercise: Guilty by Association?
070934 -
070935 - Warrick Chilton,1,* Brendan O?Brien,1 and Fadi Charchar1,2,3,*
070936 -
070937 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751176/
070939 - ..
070940 - Author information Article notes Copyright and License
070941 - information Disclaimer
070943 - ..
070944 - Abstract
070946 - ..
070947 - Telomeres are repetitive tandem DNA sequences that cap
070948 - chromosomal ends protecting genomic DNA from enzymatic
070949 - degradation. Telomeres progressively shorten with cellular
070950 - replication and are therefore assumed to correlate with
070951 - biological and chronological age. An expanding body of
070952 - evidence suggests (i) a predictable inverse association between
070953 - telomere length, aging and age-related diseases and (ii) a
070954 - positive association between physical activity and telomere
070955 - length. Both hypotheses have garnered tremendous research
070956 - attention and broad consensus; however, the evidence for each
070957 - proposition is inconsistent and equivocal at best. Telomere
070958 - length does not meet the basic criteria for an aging biomarker
070959 - and at least 50% of key studies fail to find associations with
070960 - physical activity. In this review, we address the evidence in
070961 - support and refutation of the putative associations between
070962 - telomere length, aging and physical activity. We finish with a
070963 - brief review of plausible mechanisms and potential future
070964 - research directions.
070966 - ..
070967 - Keywords: telomeres, aging, physical activity, biomarker,
070968 - association
070969 -
070970 - 1. Introcuction
070971 -
070972 - The global population of persons aged 80 years or older
070973 - will triple by 2050 [1], leading inexorably to a public
070974 - health imperative. Current increases in life expectancy
070975 - exceed concomitant increases in disease free years,
070976 - creating a compression of chronic disease burden in old age
070977 - [2]. Physiological aging is characterized by cumulative
070978 - deleterious changes to biological function [3] and is the
070979 - strongest non-modifiable predictor of most chronic
070980 - diseases. Despite this, significant variability exists in
070981 - the health impact of aging [4].
070983 - ..
070984 - Report that people over 80 will triple by 2050, but that people with
070985 - diseases will increase, places increased burden on health care
070986 - capacity.
070988 - ..
070989 - Article "Telomeres, Aging and Exercise... continues...
070990 -
070991 - The associations between mortality and traditional
070992 - biomarkers such as blood pressure, cholesterol and body
070993 - mass index (BMI) weaken with age [5]. The search for a
070994 - definitive aging biomarker is encumbered by the
070995 - heterogeneity of cellular aging. Post-mitotic cells are
070996 - not subjected to the replicative stresses experienced by
070997 - mitotic cells; therefore, some tissues exhibit greater
070998 - biological aging than others. The highly variable human
070999 - lifespan highlights that the mere passage of chronological
071000 - time is not an effective, isolated measure of aging.
071001 - Biological aging refers to processes that proceed
071002 - independently of chronological aging that reduce organismal
071003 - viability and increase vulnerability. Telomeres are
071004 - regarded by many as the heir apparent of aging biomarkers,
071005 - recording both chronological and biological age [6,7].
071007 - ..
071008 - 2. Telomere Biology -- A Primer
071009 -
071010 - Telomeres are specialized DNA structures that bookend
071011 - nuclear DNA protecting it from degradation [8]. Mitotic
071012 - division imposes a progressive loss of telomeric base
071013 - pairs (bps) due to the inability of DNA polymerases to
071014 - fully replicate the lagging C-strand [9,10]. This
071015 - cumulative loss simultaneously chronicles replicative
071016 - history and imposes a finite replicative limit. Critical
071017 - shortening of telomeres causes eventual disruption of the
071018 - protective protein shelterin complex [11]. Cells requiring
071019 - high replicative capacity express telomerase, a
071020 - specialized ribonucleoprotein complex that synthesizes
071021 - telomeric repeats [12]. Human telomerase consists
071022 - minimally of two core components; a reverse transcriptase
071023 - catalytic subunit (hTERT) and an antisense RNA template
071024 - (hTERC) [12,13]. Telomeres are sensitive to a host of
071025 - stimuli including oxidative stress [14], chronic
071026 - inflammation [15], BMI [16], smoking [17], alcohol intake
071027 - [18], perceived stress [19] and physical activity (PA)
071028 - [20]. A growing body of evidence also indicates that
071029 - telomeres are responsive to habitual PA [20,21].
071031 - ..
071032 - Despite the telomere's popular designation as a mitotic
071033 - clock, the relationship between telomere length and aging
071034 - is inconsistent and does not meet the requisite biomarker
071035 - criteria [22]. Closer examination of the association with
071036 - PA also reveals inconsistencies and methodological
071037 - confounders. The clinical and public interest in the
071038 - PA-telomere association is predicated upon several tacit
071039 - assumptions: (i) mean telomere length is causally
071040 - associated with biological aging and age-related
071041 - pathologies and (ii) PA can lengthen mean telomere length
071042 - and that in doing so; (iii) PA will reduce biological
071043 - aging and disease burden. This review summarizes the
071044 - current evidence for and against telomeres as aging
071045 - biomarkers of aging and potential mediators of
071046 - exercise-induced health gains.
071048 - ..
071049 - 3. Cellular Senesence
071050 -
071051 - Cellular senescence is the progressive and irreversible
071052 - loss of replicative capacity in somatic cells [23].
071053 - Cellular senescence sits astride several paradoxical and
071054 - seemingly incongruent binary functions; namely tissue
071055 - regeneration [24] and tissue dysfunction [25], embryonic
071056 - development [26] and organismal aging [27] and tumor
071057 - promotion [28] and suppression [29]. Senescence is
071058 - triggered when the telomeric terminal restriction fragment
071059 - (TRF) reaches a mean length of 4-7 kb [30]. At this
071060 - critical threshold, the protective shelterin complex is
071061 - disrupted exposing an uncapped double-stranded chromosome
071062 - end. This in turn triggers the ataxia telangiectasia
071063 - mutated (ATM)-p53-p21 axis and subsequent DNA damage
071064 - response (DDR) [31], preventing progression into the
071065 - S-phase of the cell cycle [32,33,34].
071067 - ..
071068 - Replicative senescence refers to proliferative exhaustive
071069 - driven by telomere loss whilst stress-induced senescence
071070 - can be precipitated by oxidative or genotoxic stress,
071071 - regardless of telomere length [35]. Replicative senescence
071072 - is causally implicated in aging and age-related diseases
071073 - such as cardiovascular disease (CVD) [36], diabetes
071074 - [37,38], osteoarthritis [39], glaucoma [40] and cataracts
071075 - [41]. In addition to lost proliferative capacity, cellular
071076 - senescence causes significant changes in gene expression,
071077 - epigenetic factors and cell morphology [42]. Senescent
071078 - cells also acquire a characteristic secretome known as the
071079 - Senescence-Associated Secretory Phenotype (SASP) [43].
071080 - This largely pro-inflammatory phenotype can initiate
071081 - senescence in young cells contributing to tissue
071082 - dysfunction [25], progression of atherosclerosis [36],
071083 - cancer [44] and diabetes [37,38].
071085 - ..
071086 - Replicative exhaustion within the immune system is called
071087 - immunosenescence; a cluster of age-related changes
071088 - resulting in decreased replicative capacity [45,46],
071089 - shortened telomeres [47], increased cytokine production
071090 - [48,49] and increased susceptibility to infectious
071091 - diseases [50]. Given the diverse physiological
071092 - ramifications, senescence may be the causal nexus linking
071093 - the indirect, microscopic causes of aging with the direct,
071094 - macroscopic effects of aging [27].
071096 - ..
071097 - 4. Telomres and Aging
071098 -
071099 - A clear inverse association exists between chronological
071100 - age and telomere length. Support of the causal association
071101 - between telomeres and aging comes from accelerated aging
071102 - conditions such as Dyskeratosis Congenita, Werner?s
071103 - Syndrome and Hutchinson-Gilford Syndrome. Such progeroid
071104 - syndromes are characterized by a sequela of age-associated
071105 - pathologies precipitated by accelerated telomere attrition
071106 - [51,52,53,54,55].
071108 - ..
071109 - The American Federation of Aging Research stipulate that
071110 - any candidate aging biomarker must satisfy the following
071111 - criteria [56,57]:
071112 -
071113 - 1. It must predict the rate of aging and therefore be a
071114 - better predictor of lifespan than chronological age
071115 - 2. It must reflect and monitor the physiological processes
071116 - underlying aging
071117 - 3. It must be a repeatable, unobtrusive and harmless
071118 - measure
071119 - 4. It must be testable in animal models
071121 - ..
071122 - 4.1 Criterion 1?Must Predict the Rate of Aging Better than
071123 - Chronological Age
071125 - ..
071126 - Human telomere length varies by 5000 to 15,000 bps at birth
071127 - [58], a measure that exceeds total average leukocyte
071128 - telomere length (LTL) shortening throughout adult life
071129 - [59]. Genome-wide association studies have identified a
071130 - host of potential candidate loci associated with LTL
071131 - variation [60,61,62,63,64,65]. Estimates of telomeric bp
071132 - loss vary between 30?200 bps per division [66,67].
071133 - Although variable in magnitude, age-related decreases in
071134 - LTL are consistently observed [68]. Three recent studies
071135 - estimated the annual telomere shortening rate at 17.4 [69],
071136 - 15.6 [70] and 48?67 bps per chronological year [71].
071137 - Paternal age at conception of the offspring is associated
071138 - with longer offspring LTL [72,73,74], yet infant LTL is
071139 - positively associated with adult telomere attrition rate
071140 - [75,76]. However, the annual adult attrition rate
071141 - contributes less to population LTL variation than LTL
071142 - variation at birth [77] and attrition rate during the first
071143 - two decades of life [78,79]. Unlike chronological age,
071144 - telomere shortening is not linear; the majority of
071145 - shortening occurs during the rapid somatic expansion from
071146 - birth to puberty [80,81]. Thereafter, adults with either
071147 - longer or shorter than average LTL tend to maintain that
071148 - classification into old age [82,83]. Telomere shortening
071149 - can be heterogeneous within a given cell as longer
071150 - telomeres shorten faster than shorter ones [84,85,86].
071152 - ..
071153 - Paradoxically, telomere lengthening has been observed in
071154 - several longitudinal studies
071155 - [75,76,87,88,89,90,91,92,93,94,95]. When assessed over a
071156 - 2?6 year period, most individuals shorten or maintain
071157 - telomere length; however, 15?44% demonstrate an increase in
071158 - mean LTL [87,89,96]. The assessment time course appears
071159 - important as less lengthening is observed when assessed
071160 - over a 10 year period [97]. Post-intervention increases in
071161 - telomere length may be due to actual telomerase-mediated
071162 - addition of telomeric DNA or an apparent lengthening due to
071163 - redistribution of immune cell subsets [98]; a caveat seldom
071164 - declared in telomeric research.
071166 - ..
071167 - More people are living into old age; however, these people
071168 - eventually die within a very narrow time span as the finite
071169 - biological limit of human lifespan is reached [99]. If
071170 - telomere length reliably scaled with lifespan, individuals
071171 - with shorter telomeres would theoretically die off before
071172 - reaching the limits of human lifespan. This would result
071173 - in an age-associated decrease in telomere length variance
071174 - known as survivor bias; a phenomenon that has been
071175 - demonstrated [100,101] and refuted in the data [102]. Most
071176 - individuals are not living long enough to reach the
071177 - critically shortened telomere threshold referred to as the
071178 - telomeric brink. It is believed that further increases in
071179 - longevity will be limited by telomere length [103]. Given
071180 - an average starting LTL of 10?15 kilobase pairs, even a
071181 - yearly loss of approximately 50 bps should still sustain
071182 - lymphocyte function well beyond 100 years of age. This
071183 - appears to support the theory that the length of the
071184 - shortest telomere, as opposed to the average telomere
071185 - length, triggers cell cycle arrest, genomic instability and
071186 - senescence [85]. Overall, LTL appears to add predictive
071187 - power to health measures but is less effective than
071188 - chronological age [104]. This may be due to high
071189 - variability in LTL at birth and throughout the lifespan.
071190 -
071191 - 4.2 Criterion 2?The Capacity to Reflect Physiological
071192 - Processes
071194 - ..
071195 - Telomeres possess clear biological plausibility as a
071196 - candidate aging biomarker, reflecting oxidative stress,
071197 - inflammation, replicative history and cellular senescence.
071198 - Despite that, associations with age-sensitive functional
071199 - measures are inconsistent. Several studies have failed to
071200 - find associations between LTL and lung function [105], grip
071201 - strength [18], blood pressure [106] and several measures of
071202 - cognitive function [18,101]. However, a more recent
071203 - investigation identified associations with lung function,
071204 - grip strength, pulse pressure, reaction time, general
071205 - mental ability and general health [104]. The Newcastle 85+
071206 - study assessed associations between a panel of 74 candidate
071207 - biomarkers and four health-status measures in a cohort of
071208 - 852 individuals aged 85 years. Leukocyte telomere length
071209 - did not fulfil the criterion of significant association
071210 - with at least two of the health-status measures [107].
071212 - ..
071213 - Boonekamp et al. propose that organisms consist of
071214 - redundancy elements that gradually fail and replace each
071215 - other as they buffer and accumulate damage. Death occurs
071216 - when the last of the elements are exhausted. Boonekamp et
071217 - al. further propose that LTL is better viewed as a
071218 - biomarker of somatic redundancy than biological aging
071219 - [108]. The somatic redundancy model fits with two
071220 - established telomere observations: (i) that longer
071221 - telomeres, possessing more redundancy units, shorten faster
071222 - than short telomeres [84] and (ii) telomere shortening only
071223 - becomes detrimental when a critical threshold is passed
071224 - [109]. The current evidence indicates that LTL likely
071225 - reflects pre-pubertal somatic growth and post-pubertal
071226 - cellular senescence and oxidative stress [58].
071227 -
071228 - 4.3 Criterion 3?A Harmless Repeatable Measure
071230 - ..
071231 - Most studies measure mean telomere length in circulating
071232 - leukocytes as physiological proxy for the target tissue.
071233 - Conclusions from these studies are predicated upon a
071234 - supposed correlation between LTL and target tissue. One
071235 - study correlated LTL with vascular tissue telomere length
071236 - [110] and there is evidence of intra-individual
071237 - correlation in telomere length between different tissues
071238 - [111,112]. A more recent study found correlations with
071239 - only two (intercostal skeletal muscle and liver) out of
071240 - twelve human tissues assessed [113]. Experimental data
071241 - suggests that differences in telomere length between
071242 - tissues are due to tissue-specific attrition rates [114];
071243 - however, these rates appears to regress towards a mean
071244 - value from adulthood to old age [79].
071246 - ..
071247 - Mean LTL represents the average telomere length across a
071248 - heterogeneous cell population. A recent study rank-ordered
071249 - telomeres as longest in B cells, then CD4+ and CD8+CD28+ T
071250 - cells (similar lengths) and shortest in senescent
071251 - CD8+CD28- T cells [115]. Telomerase expression is also
071252 - heterogeneous within the immune system; being highest in B
071253 - cells, followed by CD4+ T cells, CD8+CD28+ T cells and
071254 - lowest in CD8+CD28- T cells [115]. Exercise is known to
071255 - transiently modulate the relative proportions of leukocyte
071256 - subsets in an intensity-dependent fashion [116].
071257 - Therefore, the cellular composition at any given time
071258 - point will determine the mean LTL and telomerase activity
071259 - [115].
071261 - ..
071262 - Considerable variance exists within and between telomere
071263 - measurement techniques. At present, several different
071264 - protocols can be used to measure telomere length [117].
071265 - These range from the original gold standard Southern blot
071266 - analysis of terminal restriction fragment (TRF),
071267 - quantitative polymerase chain reaction-based techniques
071268 - (qPCR), through to single telomere length analysis (STELA),
071269 - flow and quantitative fluorescence in situ hybridization
071270 - (flow FISH and Q-FISH respectively). Each has its own
071271 - strengths, limitations and coefficient of variation (CV),
071272 - making comparisons between studies potentially inaccurate.
071273 - Data from qPCR and Southern blot are weakly correlated (r =
071274 - 0.52) [118]. Comparison between qPCR and flow FISH
071275 - obtained a similarly weak correlation coefficient (r =
071276 - 0.47) [119]. Next generation sequencing (NGS) technology
071277 - has given rise to new methods of telomere length
071278 - measurement. The two key proposed methods both count short
071279 - reads that contain telomeric repeats [120] and are
071280 - appropriate for assessment of mean telomere length in
071281 - genome [121]. However, there is considerable variation
071282 - between NGS methods and qPCR-based measurements at present
071283 - [122]. Differences in DNA extraction protocol also
071284 - significantly influence telomere length [123]. Similarly,
071285 - telomerase can also be assessed using multiple protocols
071286 - and variants thereof, either directly measuring telomerase
071287 - products or signals from telomerase-mediated DNA [124].
071289 - ..
071290 - The likelihood of measurement error in telomere research is
071291 - high. The inter-individual variation in LTL can be 5000 to
071292 - 15,000 bps [58] whilst the yearly shortening rates can vary
071293 - between 30-100 bps [125]. The majority of telomere research
071294 - utilizes qPCR which has a CV of 6.45% compared to TRF which
071295 - has a CV of 1.74% [117]. Such variation is likely to render
071296 - many associations non-significant or questionable at the
071297 - very least.
071299 - ..
071300 - 4.4 Criterion 4--Testable in Animal Models
071302 - ..
071303 - Animal models have significantly furthered the
071304 - understanding of telomere homeostasis and disease;
071305 - however, some inherent limitations affect direct
071306 - inter-species comparisons. The life expectancy of a mouse
071307 - is more than 40 times shorter than that of a human yet
071308 - mouse telomeres are 5 to 10 times longer [126]. The
071309 - telomerase enzyme is functionally active in the majority
071310 - but not all, murine tissues [127]; as distinct from humans
071311 - that lack detectable telomerase levels in many somatic
071312 - cells [128]. The telomerase-negative mTR?/? mouse was
071313 - initially developed to examine the role of telomerase in
071314 - normal and neoplastic growth [129]. It has since made
071315 - valuable contributions to the understanding of telomere
071316 - regulation. However, in addition to exhibiting telomere
071317 - dysfunction and increased end-to-end fusions [129,130],
071318 - late generation mTR?/? mice can also exhibit a host of
071319 - other pathological phenotypes
071320 - [130,131,132,133,134,135,136,137,138,139]. Knock-in of
071321 - telomerase eliminates many of the degenerative phenotypes
071322 - observed in late generation mTR?/? mice [140]. The
071323 - comparatively sterile laboratory conditions mice are
071324 - subjected to remove several negative telomere instigators
071325 - such as variable diets, pollution, ultraviolet light and
071326 - inflammation [141].
071328 - ..
071329 - Whilst rodents are the most widely used animal models,
071330 - zebrafish have also been used extensively in
071331 - telomere/telomerase research. Their short life, relatively
071332 - short generation time and an unlimited capacity to
071333 - regenerate their fins in 7?10 days makes them a convenient
071334 - model [142,143]. Expression levels of zebrafish TERT mRNA
071335 - closely correlate with telomerase activity and in
071336 - accordance with most marine species, they appear to
071337 - maintain telomerase expression in somatic tissues [144]. A
071338 - telomerase-mutant zebrafish strain has been widely used to
071339 - study aging phenotypes; however, it demonstrates aging
071340 - phenotypes that are far more pronounced than wild-type
071341 - animals [145]. Telomere/telomerase has also been
071342 - investigated in avian species [146], primate species
071343 - [147], plants [148,149], nematodes [150,151] and
071344 - Drosophila [152]. Each animal model has made contributions
071345 - to the understanding of telomere homeostasis; however,
071346 - most have physiological discontinuities that challenge
071347 - their representativeness of normal human aging.
071349 - ..
071350 - 5. Telomeres and Age-Related Diseases
071351 -
071352 - Variable associations exist between accelerated telomere
071353 - shortening and age-related diseases such as CVD
071354 - [96,153,154], cancer [155], stroke [156] diabetes
071355 - [157,158,159], dementia [160,161,162], chronic obstructive
071356 - pulmonary disease [163] and skin disorders [164]. Shorter
071357 - LTL was initially associated with coronary artery disease
071358 - (CAD) in 2001 [165]; with similar CVD associations to
071359 - follow [106,153,166,167,168,169,170,171,172,173]. Short
071360 - LTL but not attrition rate, was recently associated with
071361 - carotid atherosclerosis progression [174]. Moreover, short
071362 - telomeres were more strongly associated with early-onset
071363 - than late-onset atherosclerosis. A host of CVD risk
071364 - factors have also been observationally associated with
071365 - shortened LTL including smoking [17], diabetes [158],
071366 - hypercholesterolemia [175], hypertension [176], obesity
071367 - [177], physical inactivity [20], alcohol consumption [178]
071368 - and psychological issues [179]. Several other studies have
071369 - not found associations with blood lipid status [15],
071370 - hypertension [15,153], smoking [101,180] and BMI
071371 - [101,180]. A more recent study found no associations
071372 - between LTL and coronary risk factors including
071373 - cholesterol, triglyceride, HDL-cholesterol,
071374 - LDL-cholesterol, smoking, personal or family history of
071375 - CVD [181].
071377 - ..
071378 - Three key studies have since failed to find any
071379 - association between LTL and early atherosclerosis
071380 - [173,182,183]. Additionally, a recent study associated
071381 - long, as opposed to short LTL with a nearly three-fold
071382 - higher risk of developing myocardial infarction [184].
071383 - Support for a causal link continues to come from genetic
071384 - and observational prospective studies using Mendelian
071385 - randomization to reduce the likelihood of reverse
071386 - causation. A cluster of seven alleles associated with
071387 - shortened LTL are themselves associated with a 21%
071388 - increased CAD risk per standard deviation in LTL
071389 - [185,186,187]. Despite an abundance of conflicting
071390 - evidence, the broader scientific consensus is that
071391 - shortened LTL represents an increased risk of CVD and
071392 - likely reflects accelerated leukocyte turnover due to
071393 - oxidative stress and inflammation.
071395 - ..
071396 - Accumulating evidence indicates an independent
071397 - pro-telomeric effect of statin treatment [188]. Aspirin
071398 - decreases oxidative stress and forestalls endothelial cell
071399 - senescence [189] yet inhibits telomerase activation in
071400 - polymorphonuclear neutrophils from carotid plaques [190].
071401 - Angiotensin-converting enzyme (ACE) inhibitors also
071402 - demonstrate a pro-telomeric effect via upregulation of
071403 - TERT mRNA in endothelial cells [191]. Androgen treatment
071404 - also significantly increased LTL in a cohort with
071405 - telomere-shortening diseases [192].
071407 - ..
071408 - The relationship between LTL and cancer is complex and at
071409 - times paradoxical. A detailed treatment of the role of
071410 - telomeres in malignant transformation is beyond the scope
071411 - of this review. What follows is a brief overview of
071412 - current evidence. Telomere shortening and uncapping (loss
071413 - of shelterin integrity) are believed to play an anticancer
071414 - role [193]. Long LTL is associated with increased risk of
071415 - several cancer types
071416 - [194,195,196,197,198,199,200,201,202,203]. However, in
071417 - some instances shortened telomeres can potentiate cancer
071418 - by fusing with other uncapped telomeres, thereby creating
071419 - genome destabilizing fusion-bridge-breakage cycles [193].
071420 - Telomerase activity is a critical component in malignant
071421 - transformation with 85?90% of all malignant tumors being
071422 - telomerase positive [128,204]. It is estimated that ~15%
071423 - of human cancers maintain telomere length through one or
071424 - more mechanisms referred to as Alternative Lengthening of
071425 - Telomeres (ALT) [205]. A cluster of seven alleles
071426 - associated with LTL homeostasis, TERC, TERT,
071427 - oligonucleotide/oligosaccharide-binding fold containing
071428 - one gene (OBFC1), zinc finger protein 208 (ZNF208),
071429 - regulator of telomere elongation helicase 1 (RTEL1),
071430 - acylphosphatase 2 (ACYP2) and nuclear assembly factor 1
071431 - ribonucleoprotein (NAF1) are simultaneously associated
071432 - with CAD [185] and cancer [195,198]. If the alleles result
071433 - in comparatively long telomeres, the cancer risk is
071434 - elevated and the CAD risk is reduced; the reverse is also
071435 - true. It has been proposed that the cancer protection
071436 - conferred by short telomeres represents an evolutionary
071437 - trade-off resulting in decreased proliferative and
071438 - regenerative capacity [206]. Non-linear U-shaped
071439 - relationships have been observed between telomere length
071440 - and several cancer risk profiles [207]. This may in part
071441 - be explained by the destabilizing and potentially
071442 - oncogenic effects of shortened telomeres [208] and the
071443 - increased replicative capacity and potential accumulation
071444 - of abnormalities associated with longer telomere length
071445 - [209].
071447 - ..
071448 - One proposed explanation for the discrepant associations
071449 - is that telomere uncapping has an anti-cancer effect in
071450 - the young but a potentially pro-cancer effect in the
071451 - elderly [210]. Hypothetically, the more robust telomere
071452 - dysfunction-based mechanism of the young would prevent
071453 - tumorigenesis whilst the shortened, uncapped and depleted
071454 - telomeres of the elderly may allow bypass of aberrant
071455 - cells [210].
071457 - ..
071458 - 6. Telomres, Longevity and Mortality
071459 -
071460 - The association with overall longevity is similarly
071461 - inconsistent. Whilst several studies support an
071462 - association with longevity [211,212,213,214], just as many
071463 - refute it [101,180,215,216]. However, the observation that
071464 - LTL is longer in women may be linked to the greater
071465 - longevity observed in women [217]. Additionally, in twin
071466 - studies, the individual with longer LTL exhibits enhanced
071467 - longevity compared to the other twin [218].
071469 - ..
071470 - A range of studies have identified age-adjusted inverse
071471 - associations between mean LTL and all-cause mortality
071472 - [69,88,160,162,211,212,219,220,221,222,223,224,225,
071473 - 226,227]. However, other studies were unable to replicate
071474 - the association in similar cohorts [18,91,96,101,153,
071475 - 180,215,216,228,229,230]. Analysis of cohorts from Costa
071476 - Rica, Taiwan and United States of America found that after
071477 - adjustment for gender and age, LTL ranked between 15th and
071478 - 17th out of 20 established predictors and biomarkers of
071479 - all-cause mortality [231]. A cohort of 4576 healthy
071480 - individuals had LTL measured twice within a 10-year
071481 - interval and were then monitored for morbidity and
071482 - mortality for another 10 years. Change in LTL and risk of
071483 - all-cause mortality were not significantly associated [95].
071484 - Despite abundant associations between telomere length and
071485 - age-associated mortality, the association diminishes with
071486 - age [108]; failing to predict mortality in cohorts of the
071487 - very old [101,180]. Paradoxically, telomere length in
071488 - early childhood most accurately predicts life expectancy
071489 - [108,232].
071491 - ..
071492 - 7. Physical Activity and Telomere Length
071493 -
071494 - The widely touted relationship between PA and LTL is
071495 - replete with inconsistencies. Support for a positive
071496 - association has come from a range of
071497 - observational/cross-sectional studies [20,179,223,233,
071498 - 234,235,236,237,238,239,240,241,242,243,244,245,246,
071499 - 247,248]. A summary of human studies that significantly
071500 - associated PA with telomere length is contained in Table 1.
071501 - Telomere length has been assessed in skeletal muscle cells
071502 - and white blood cells (WBCs) in response to aerobic
071503 - training, resistance training and self-reported PA. The
071504 - observed associations appear hormetic, with low and
071505 - excessive levels of activity associated with shorter
071506 - telomeres [241,244] and moderate levels more commonly
071507 - associated with longer LTL [223].
071508 -
071510 - ..
071511 - Table 1
071513 - ..
071514 - Terminology...
071516 - ..
071517 - CHD: coronary heart disease. CVD: cardiovascular disease.
071518 - FlowFISH: fluorescence in situ hybridization combined with
071519 - flow cytometry. TL: telomere length. LTL: leukocyte
071520 - telomere length. PA: physical activity. PBMCs: Peripheral
071521 - blood mononuclear cells. TRF: terminal restriction
071522 - fragment analysis. TRFL: terminal restriction fragment
071523 - length. T/S qPCR: the ratio of telomere PCR value to
071524 - single-copy gene value derived from quantitative PCR. SD:
071525 - standard deviation. SES: socio-economic status. VO2max:
071526 - maximal volume of oxygen uptake.
071527 -
071529 - ..
071530 - Ref Subjects (n) Tissue Measurement Key Findings
071531 -
071532 - Sedentary: one unit increase in the
071533 - 63 healthy post-menopausal Leukocytes T/S qPCR Perceived Stess Scale = 15-fold
071534 - 19 women; sedentary group, increase in odds of having short
071535 - active group telomeres (p < 0.05).
071536 -
071537 -
071538 - Leisure time PA positively associated
071539 - 20 White twins 2401: 2152 with LTL (p < 0.001) LTLs of the most
071540 - females, 249 males Leukocytes Southern blot active subjects were 200 nucleotides
071541 - TRF longer than least active (p = 0.006)
071542 -
071543 -
071544 - <elative PA (p < 0.0002) and absolute
071545 - PA (P = 0.0052) associated with longer
071546 - 5823 adult participants; LTL after adjustment for demographic
071547 - 70 males (n = 2766), females Leukocytes T/S qPCR variables.
071548 - (n=3057) Prevalence of short telomeres
071549 - associated with relative PA
071550 - <p < 0.0001)
071551 -
071552 -
071553 -
071554 -
071555 - PA positively associated with
071556 - <RFI (p < 0.005)
071557 - 1552 Caucasian female twins Overall decreasing trend in
071558 - 749 monozygotic twins. Leukocytes Southern blot TRFI with lower SES (p < 0.024)
071559 - 179 Distributed into six TRF Significant difference in TRFI
071560 - socioeconomic status (SES) between non-nanual and manual
071561 - groups workers (p < 0.01)
071562 -
071563 -
071564 -
071565 -
071566 -
071567 - 44 healthy post-menopausal Leukocytes T/S qPCR LTL significantly higher in habitual
071568 - 223 women, divided into habitual exercise group compared to sedentary
071569 - and sedentary grups group (p < 0.01)
071570 -
071571 -
071572 - LTL is positively associated
071573 - with self-reported physical
071574 - 274 pairs same sex twins Leukocytes Southern blot ability in all pairs combined
071575 - 233 (153 dizygotic pairs, 121 TRF (p = 0.006).
071576 - monozygotic pairs) Positive association between
071577 - PA and LTL in all pairs
071578 - (p = 0.034).
071579 -
071580 -
071581 -
071582 -
071583 - 67 male ultra-marathon LTL 11% longer in ultra-marathon
071584 - 234 runners, 63 age and Leukocytes T/S qPCR runners compared to controls
071585 - sex-matched controls (p < 0.001).
071586 -
071587 -
071588 -
071589 - Moderately or highly active women
071590 - had 0.07 SD increase in LTL
071591 - 235 Nurse's health study--7813 compared to least active
071592 - females Leukocytes T/S qPCR (p = 0.02). Greater moderate
071593 - or vigorous activity associated
071594 - with longer LTL (p = 0.02).
071595 -
071596 -
071597 -
071598 -
071599 - 392 post-menopausal women Southern blot No PA significantly associated
071600 - 236 with State I-III breast PBMCs TRF with shorter LTL (p = 0.03).
071601 - cancer
071602 -
071603 -
071604 -
071605 - Low frequency PA an independent
071606 - 237 895 participants: 476 Leukocytes T/S qPCR predictor of short LTL
071607 - females, 419 males (p < 0.001).
071608 -
071609 -
071610 -
071611 -
071612 -
071613 -
071614 - LTL significantly longer in
071615 - 944 participants with stable subjects with high exercise
071616 - CHD, distributed into three capacity compared to low
071617 - 238 exercise capacity groups: Leukocytes T/S qPCR (p < 0.001). Association
071618 - low (n = 299), moderate: remained after adjustment
071619 - n = 334, high: n = 381 for CVD severity and
071620 - physical inactivity
071621 - (p = 0.005)
071622 -
071623 -
071624 -
071625 - LTL of older exercising subjects
071626 - 57 participants stratified significantly longer than
071627 - into four groups: young Southern blot age-matched sedentary controls
071628 - 239 sedentary (n = 15), young Leukocytes TRF (p < 0.001). LTL of older
071629 - exercising (n = 10), older exercisers not significantly
071630 - sedentary (n = 15), older different from young exercisers
071631 - exercising (n = 17) (p = 0.12). LTL positively
071632 - associated with VO/2max
071633 - <p < 0.01).
071634 -
071635 -
071636 - 1764 adults: 51% males, 49% LTL longer in upper tertile
071637 - females, 73% non-Hispanic (p = 0.04) and middle tertile
071638 - 240 whites; distributed into Leukocytes T/S qPCR (p = 0.02) compared to
071639 - cardiorespiratory fitness lowest tertile.
071640 - tertiles
071641 -
071642 -
071643 - 69 healthy participants: Significantly longer telomeres
071644 - 34 males, 35 females; PMBCs T/S qPCR in second exercise energy
071645 - 241 distributed into four expenditure quartile compared
071646 - exercise energy expenditure to first (p = 0.001) and
071647 - quartiles fourth (p = 0.04) quartiles.
071648 -
071649 -
071650 -
071651 - Longer telomeres in older athletes
071652 - 20 male participants: 5 compared to older non-athletes
071653 - young athletes, 5 young Skeletal T/S qPCR (p = 0.04). Young athletes not
071654 - 242 non-athletes, 5 older muscle different to young non-athletes
071655 - athletes, 5 older (p = 0.12). Strong correlation
071656 - non-athletes between VO/2max and T/S ratio
071657 - in athletes (p = 0.02).
071658 -
071659 -
071660 - One SD below mean PA levels,
071661 - major life stressors were
071662 - associated with LTL shortening
071663 - 243 239 post-menopausal women Leukocytes T/S qPCR (p = 0.008). One SD above
071664 - mean PA level, major life
071665 - stressors were not associated
071666 - with LTL shortening (p = 0.48).
071667 -
071668 -
071669 -
071670 - Inverted ?U? response. Moderate
071671 - PA positively associated with
071672 - 782 males: three PA groups Southern blot longest LTL (p = 0.03).
071673 - 244 low (n = 148), moderate (n Leukocytes TRF LTL the same in low and high PA
071674 - = 398), high (n = 236) groups. Moderate PA group had
071675 - lowest proportion of short
071676 - LTL (p = 0.02).
071677 -
071678 -
071679 -
071680 - 46 participants distributed T cell TL longer in moderately
071681 - into three PA groups: trained and intensively trained
071682 - 245 never trained (n = 15), PMBCs Flow-FISH compared to never trained
071683 - moderately trained (n = 16), (p < 0.05). Significantly longer
071684 - intensively trained (n = 15) telomeres in CD8+ T cells in IT
071685 - <roup (p < 0.05).
071686 -
071687 -
071688 -
071689 - 36 healthy participants Mean TL from leg muscle of
071690 - 246 distributed into three Skeletal T/S qPCR the old immobile group was
071691 - groups: young (n = 12), muscle significantly shorter than
071692 - old mobile (n = 12), old old mobile group (p < 0.05),
071693 - immobile (n = 12) young group (p < 0.05), arm
071694 - <uscle (p < 0.05).
071695 -
071696 -
071697 -
071699 - ..
071700 - Young sedentary controls Older sedentary controls had shorter
071701 - (n = 26), young athletes Flow-FISH mononuclear cell telomeres than all
071702 - 247 (n = 32), middle-aged Leukocytes and other groups (p < 0.001). Age-dependent
071703 - sedentary (n = 21), T/S qPCR telomere loss attenuated in lymphocytes
071704 - middle-aged athletes (p < 0.001) and granulocytes (p < 0.001)
071705 - (n = 25) of older athletes.
071706 -
071707 -
071708 -
071709 - 667 healthy adolescents: Vigorous PA positively associated
071710 - 248 169 white males, 179 white Leukocytes T/S qPCR with telomere length (p = 0.009)
071711 - females, 155 black males,
071712 - 164 black females
071713 -
071714 -
071715 - 249 6474 participants: 49.6% Leukocytes T/S qPCR LTL positively associated
071716 - males, 50.4% females with running (p = 0.03)
071717 -
071718 -
071719 -
071720 - Baseline TL better preserved in
071721 - endurance athletes (p = 0.003).
071722 - 20 endurance athletes, 42 Buccal T/S qPCR Intermediate TL reduced in
071723 - 268 age- and gender-matched cells endurance athletes compared
071724 - controls to baseline (p = 0.002).
071725 - Final time point TL reduced
071726 - in endurance athletes
071727 - compared to baseline (p
071728 - = 0.0006).
071729 -
071730 -
071731 -
071732 -
071733 - 269 477 healthy males and Leukocytes T/S qPCR Vigorous PA positively associated
071734 - females with LTL (p < 0.01).
071735 -
071736 -
071737 -
071738 - LTL longer in participants: currently
071739 - exercising compared to inactive
071740 - 270 814 participants: 397 Leukocytes T/S qPCR (p = 0.013), engaged in intensive
071741 - males, 417 females activity (p = 0.011), participating
071742 - in sport for 10 years prior to
071743 - assessment (p = 0.017).
071744 -
071745 -
071746 - Highest self-reported PA associated
071747 - with longer LTL compared to lowest
071748 - 271 1476 older aged white and Southern blot PA (p = 0.02). Higher levels of
071749 - African American women Leukocytes TRF moderate-to-vigorous PA (p = 0.04)
071750 - and faster walking speed (p = 0.03)
071751 - associated with longer LTL.
071752 -
071753 -
071754 - Greater walking distance (p = 0.007)
071755 - and better chair test performance
071756 - Southern blot (p = 0.04) associated with longer
071757 - 272 582 older adults Leukocytes TRF LTL cross-sectionally. Change in
071758 - chair test performance associated
071759 - with less LTL shortening
071760 - longitudinally (p = 0.04).
071761 -
071762 -
071763 -
071765 - ..
071766 - A 2016 study of 6474 males and females positively
071767 - associated running with LTL yet found no associations with
071768 - other PA domains including aerobics, basketball,
071769 - bicycling, dancing, running, stair climbing, swimming,
071770 - walking and weight-lifting [249]. The authors speculate
071771 - that the sustained weight-bearing status of running may
071772 - preferentially activate signaling pathways, citing other
071773 - studies that demonstrated associations in ultra-endurance
071774 - runners [234]. One can only speculate that insufficient
071775 - statistical power explains the lack of association found
071776 - in other studies employing running as the independent
071777 - variable [250,251]. Self-reported PA was positively
071778 - associated with LTL in a cohort of 5823 men and women from
071779 - the National Health and Nutrition Examination Survey
071780 - (NHANES) [70]. Objectively measured maximal
071781 - cardiorespiratory fitness (VO2max) has also been
071782 - positively associated with LTL in a cohort of obese women
071783 - [252] and older exercise-trained participants [239].
071785 - ..
071786 - The positive associations have been refuted by several
071787 - observational and interventional studies [15,89,97,250,
071788 - 251,252,253,254,255,256,257,258,259,260,261,262,263,
071789 - 264,265,266]. A summary of human studies that found no
071790 - significant association between PA and telomere length is
071791 - contained in Table 2. A rigorous 2015 systematic review and
071792 - meta-analysis concluded that insufficient quality evidence
071793 - exists to conclusively associate PA with LTL [267].
071794 - Approximately 54% of studies reviewed found no relationship
071795 - between PA and LTL; 41% found a positive association and 5%
071796 - identified a curvilinear relationship [267]. Most of the
071797 - positive associations were weak to moderate with only two
071798 - studies reporting strong associations [223,234]. The
071799 - analysis cited methodological issues such as weak
071800 - correlations, assessment of varied tissue types, arbitrary
071801 - cuff-off points, inadequate blinding of researchers,
071802 - selective inclusion of other potentially confounding
071803 - lifestyle factors and discrepant measurement techniques as
071804 - possible confounders [267]. Discrepant modes of PA and the
071805 - wide-spread use of self-reported PA with its inherent
071806 - biases may also explain the lack of association in several
071807 - of the studies. A similar review conducted in 2013 assessed
071808 - the effect of exercise in animals and humans and identified
071809 - three general association types: positive association,
071810 - inverted ?U? response and no association [21].
071812 - ..
071813 - Table 2
071815 - ..
071816 - A summary of studies showing no association between
071817 - physical activity and telomere length.
071819 - ..
071820 - CAD: coronary artery disease. LTL: leukocyte telomere
071821 - length. PA: physical activity. PBMCs: peripheral blood
071822 - mononuclear cells. TRF: terminal restriction fragment
071823 - analysis. T/S qPCR: the ratio of telomere PCR value to
071824 - single-copy gene value derived from quantitative PCR.
071825 - VO2max: maximal volume of oxygen uptake.
071827 - ..
071828 - Ref Subjects (n) Tissue Measurement Key Findings
071829 -
071830 -
071831 - 2509 participants: males Southern blot Self-reported PA not associated
071832 - 15 (n = 1218), females (n = Leukocytes TRF with LTL (p = 0.806).
071833 - 1291)
071834 -
071835 -
071836 -
071837 - 89 608 individuals with stable Leukocytes T/S qPCR PA did not independently
071838 - CAD: 244 males, 364 females modulate LTL (p = 0.59).
071839 -
071840 -
071841 -
071842 - 95 4576 male and female Leukocytes T/S qPCR Change in LTL over 10 years not
071843 - Danish participants associated with PA (p = 0.85)
071844 -
071845 -
071846 -
071847 - No significant association between
071848 - 612 advanced prostate cancer PA and LTL in all subjects combined
071849 - 273 cases 1049 age-matched Leukocytes T/S qPCR (p = 0.262).
071850 - controls LTL positively associated with
071851 - healthy lifestyle factors (e.g.,
071852 - diet, PA, smoking) (p = 0.004).
071853 -
071854 -
071855 -
071856 - 17 marathon runners 15 age- Lymphocytes No significant difference between
071857 - 250 and sex-matched sedentary and T/S qPCR marathon runner lymphocyte TL
071858 - controls granulocytes (p = 0.6) and granulocyte
071859 - (p = 0.9) compared to controls.
071860 -
071861 -
071862 - No significant difference in minimum
071863 - TRF between runners and sedentary
071864 - 251 18 experienced runners, Skeletal Southern blot (p = 0.805). Minimum TRF within
071865 - 19 sedentary individuals muscle TRF runners inversely related to years
071866 - of running (p = 0.007) and hours
071867 - spent training (p = 0.035).
071868 -
071869 -
071870 - 439 overweight and obese
071871 - women Randomized into: No significant difference in LTL
071872 - dietary weight loss in exercise group (p = 0.51),
071873 - 252 (n = 118), aerobic Leukocytes T/S qPCR diet and exercise group (p = 0.14).
071874 - exercise (n = 117), Baseline LTL positively associated
071875 - diet and exercise (n = with VO/2max (p = 0.03).
071876 - 117), control (n = 87)
071877 -
071878 -
071879 - 253 2284 women (Nurses? Leukocytes T/S qPCR No association between LTL
071880 - Health Study) and PA (p = 0.69).
071881 -
071882 -
071883 - 255 981 individuals: 467 males, Leukocytes T/S qPCR Work related PA not associated
071884 - 514 females with LTL (p = 0.933)
071885 -
071886 -
071887 -
071888 -
071889 - 521 obese individuals Self-reported PA not associated
071890 - 256 randomized into: 2 Leukocytes T/S qPCR with telomere length (p = 0.186).
071891 - Mediterranean diet groups,
071892 - 1 low-fat control group
071893 -
071894 - No significant difference in LTL
071895 - 190 subjects with impaired Leukocytes T/S qPCR following multi-faceted lifestyle
071896 - 257 glucose tolerance, 188 intervention at 4.5 years follow
071897 - controls up (p = 0.76).
071898 -
071899 -
071900 - 14 individuals, 7 Skeletal Southern blot TL not significantly associated
071901 - 258 powerlifters, 7 muscle TRF with 8 ± 3 years of powerlifting
071902 - healthy controls experience (p = 0.07).
071903 -
071904 -
071905 -
071906 - 599 healthy males: No association between
071907 - 259 392 former athletes, 207 Leukocytes T/S qPCR self-reported volume of
071908 - controls leisure time PA and LTL
071909 - in later life (p = 0.845).
071910 -
071911 -
071912 -
071913 - 42 participants: 10 young Skeletal Southern blot Tibialis anterior telomere
071914 - 261 males, 6 young females, 13 muscle TRF length not significantly
071915 - old males, 13 old females influenced by self-reported
071916 - PA (p value not available).
071917 -
071918 -
071919 -
071920 - 16 obese middle-aged women No significant change in LTL after
071921 - 262 randomized into: exercise Leukocytes T/S qPCR 6 months of aerobic training.
071922 - group, control group
071923 -
071924 -
071925 -
071926 - 263 136 participants: 50 Lymphocytes T/S qPCR Self-reported PA not associated
071927 - males, 86 females with longer TL (p = 0.4570).
071928 -
071929 -
071930 - No association between PA and
071931 - LTL. Presence of five low-risk
071932 - 264 5862 women Leukocytes T/S qPCR healthy lifestyle factors
071933 - associated with longer LTL
071934 - (p = 0.015).
071935 -
071936 -
071937 - PA not significantly associated
071938 - 265 1942 male and female Leukocytes T/S qPCR with LTL in males or females
071939 - participants (p-value not available)
071940 -
071941 -
071942 -
071943 - 2006 Chinese participants: No significant difference in TL
071944 - 266 male (n = 976), female Leukocytes T/S qPCR across quartiles of self-reported
071945 - (n = 1030) PA (p = 0.32)
071946 -
071947 -
071948 - 84 Caucasian individuals No significant difference in
071949 - distributed into two groups: PBMC telomere length between
071950 - 274 exercise trained (n = 44), PBMCs T/S qPCR exercising group and controls
071951 - recreationally active (p = 0.72).
071952 - controls (n = 40)
071953 -
071954 -
071955 -
071956 - 203 healthy participants;
071957 - 275 African (n = 96), Caucasian Leukocytes T/S qPCR Habitual PA not associated with LTL.
071958 - (n = 107)
071959 -
071961 - ..
071962 - Whilst some studies identify beneficial chronic effects of
071963 - exercise on telomere length, acute telomere shortening has
071964 - also been observed within the same cohort [268]. A study
071965 - of 2006 Chinese participants found no significant
071966 - difference in LTL across quartiles of PA [266]. Crucially,
071967 - the author cited possible decreased role of PA in the
071968 - seventh decade given potential selection bias of recruiting
071969 - healthy elderly participants. A common criticism of
071970 - studies failing to find associations with PA is the lack of
071971 - statistical power; however, a range of studies with sample
071972 - sizes ranging from 1942?5862 participants have failed to
071973 - find an association between PA and LTL
071974 - [15,95,253,264,265,266]. In a cohort of 4576 Danish men
071975 - and women, PA was not associated with LTL change over 10
071976 - years [95]. A study by Sun et al. (2012) did not
071977 - demonstrate an association between PA and LTL in a cohort
071978 - of 5862 middle-aged women [264]; however, the addition of
071979 - five low-risk factors (smoking status, PA, adiposity,
071980 - alcohol use and diet) to the analysis established a
071981 - significant association.
071982 -
071984 - ..
071985 - 8. Proposed Mechanisms
071986 -
071987 - Despite the positive associations between habitual PA and
071988 - LTL, a clear mechanistic understanding of telomeric
071989 - adaptation is lacking. Following is a summary of the more
071990 - widely held mechanistic theories and some candidate
071991 - mechanisms still subject to further investigation. For a
071992 - detailed review of other candidate molecules and signaling
071993 - pathways, readers should seek out the relevant reviews
071994 - [21].
071996 - ..
071997 - 9. Telomerase and Physical Activity
071998 -
071999 - Longer telomeres are often inferred by increased
072000 - telomerase activity; however, levels do not reliably
072001 - correlate with telomere length [276]. In a study of 124
072002 - health individuals, telomerase activity progressively
072003 - decreased in concert with telomere length from ages 4 to
072004 - 39 years. However, 65% of individuals aged 40 years or
072005 - older exhibited low yet stable telomerase expression
072006 - despite continued telomere shortening [277].
072008 - ..
072009 - Mouse models have demonstrated exercise-induced telomerase
072010 - increases [247,278,279,280]; however, human results are
072011 - conflicting. In one study, there was no difference in
072012 - peripheral blood mononuclear cell (PBMC) telomerase
072013 - expression between physical fitness categories [241]. Yet
072014 - in another study, endurance-trained athletes demonstrated
072015 - increased leukocyte telomerase compared to controls [247].
072016 - A 3 month multifaceted intervention consisting of diet,
072017 - exercise and stress management techniques increased PBMC
072018 - telomerase expression; however, direct causation cannot be
072019 - assigned to one specific modality [281]. Whilst some
072020 - interventional studies using acute and intensive exercise
072021 - interventions failed to increase leukocyte telomerase
072022 - expression [260], a recent study elicited increased PBMC
072023 - telomerase expression after a single bout of treadmill
072024 - running [282]. Exercise-induced increases in hTERT mRNA
072025 - have been observed; however, a correlation with telomerase
072026 - enzyme activity can only be inferred [283].
072028 - ..
072029 - Telomerase preferentially targets short telomeres [284],
072030 - therefore acute increases in telomerase may be an attempt
072031 - to stabilize critically shortened telomeres [285]. This
072032 - may explain the increased telomerase activity and
072033 - shortened telomeres that accompany subclinical coronary
072034 - atherosclerosis [286].
072036 - ..
072037 - 10. Oxidative Stress
072038 -
072039 - The accumulation of oxidative stress-induced DNA damage is
072040 - a key factor in cellular dysfunction and organismal aging
072041 - [287], neurodegeneration [288,289], atherosclerosis,
072042 - diabetes [290] and carcinogenesis [291]. Telomeric DNA is
072043 - particularly susceptible to oxidative damage due to the
072044 - telomeric G triplet [14,292,293,294]. Chronic oxidative
072045 - stress decreases telomeric DNA repair mechanisms [295],
072046 - resulting in cumulative and irreparable damage [35]. In
072047 - doing so, telomeres chronicle chronic exposure to
072048 - oxidative stress [296].
072050 - ..
072051 - Paradoxically, mild exposure to oxidative stress serves a
072052 - telomere protective function by increasing anti-oxidant
072053 - defense systems [262,297,298,299,300,301] and enhancing
072054 - oxidative damage repair systems [302]. Cellular
072055 - antioxidant capacity is correlated with cellular
072056 - proliferative capacity and telomere attrition rate [303].
072057 - Overexpression of superoxide dismutase reduces telomere
072058 - shortening in human fibroblasts [304]. Additionally, under
072059 - conditions of oxidative stress, telomerase translocates to
072060 - the mitochondria where it appears to play a protective
072061 - function [305,306]. The association between habitual
072062 - moderate intensity exercise and longer telomeres [223,273]
072063 - may be mediated by an exercise-induced increase in
072064 - antioxidant defenses. However, a study of obese
072065 - middle-aged women demonstrated increases in antioxidant
072066 - enzymes without concomitant changes in LTL [262].
072067 -
072069 - ..
072070 - 11. Inflammation
072071 -
072072 - The PA-mediated attenuation of chronic inflammation likely
072073 - underpins the protective effect of PA on LTL. Chronic
072074 - inflammation causes hematopoietic stem cell activation and
072075 - subsequent WBC turnover resulting in telomere attrition
072076 - [307]. Shortened LTL have been associated with elevated
072077 - concentrations of pro-inflammatory cytokines interleukin
072078 - (IL)-6 and tumor necrosis factor (TNF)-? [308]. Chronic
072079 - inflammation can also elicit replicative senescence,
072080 - oxidative stress and modulation of telomerase activity
072081 - [309,310,311,312,313]. Shorter mean LTL may reflect an
072082 - increased burden of senescent cells which are known to
072083 - create a pro-inflammatory phenotype [314,315]. Despite the
072084 - association, chronic inflammation levels but not LTL
072085 - predicted successful aging in a cohort of 1554
072086 - centenarian, supercentenarians and very old individuals
072087 - [228].
072089 - ..
072090 - What does "chornic inflammation" mean - how is it achieved,
072091 - maintained in a way that predicts "...successful aging in
072092 - centenarian, supercentenarians and very old..." people"?
072094 - ..
072095 - Article continues...
072096 -
072097 - A consistent inverse association is seen between habitual
072098 - PA and chronic inflammation [316,317]. The inverted ?U?
072099 - response of telomere homeostasis identified in some
072100 - studies may be partially explained by the hormetic
072101 - inflammatory and oxidative stress response to exercise
072102 - [318,319]. Whether PA decreases inflammation and
072103 - subsequent telomere attrition or decreases telomere
072104 - attrition, therefore forestalling the onset of
072105 - senescence-mediated inflammation, remains an open
072106 - question.
072108 - ..
072109 - 12. The Shelterin Complex
072110 -
072111 - Mouse models have demonstrated exercise-induced plasticity
072112 - of shelterin components including Trf2 mRNA [279] and
072113 - skeletal muscle Trf1 mRNA [320]. Human studies, mostly
072114 - observational, have identified increased TRF2 mRNA and
072115 - protein in young and middle-aged athletes compared to
072116 - controls [247]. Increased mRNA expression of leukocyte
072117 - adrenocortical dysplasia homolog (TPP1) and hTERT mRNA was
072118 - also observed in athletes compared to controls [254].
072119 - Athletes who performed seven marathons in one week
072120 - demonstrated upregulated DNA damage repair enzymes Ku70
072121 - and Ku80 in addition to increased TRF1, TRF2 and Pot-1
072122 - mRNA expression. This occurred without concomitant changes
072123 - in telomere length or telomerase activity [260]. A single
072124 - 30 min bout of treadmill running upregulated WBC hTERT and
072125 - telomeric repeat binding factor 2 (TERF2IP) mRNA
072126 - expression in healthy males [283]. Whilst highly plausible
072127 - mechanisms, these observations do not infer causation.
072129 - ..
072130 - 13. Epigenetics and Telomere Homeostasis
072131 -
072132 - Telomere length is influenced by a host of epigenetic
072133 - factors including methylation of sub telomeric DNA
072134 - [321,322,323], histone modification [324,325],
072135 - posttranslational modifications of shelterin components
072136 - [326,327] and non-coding RNAs [328]. An in-depth review of
072137 - all proposed epigenetic pathways is beyond the scope of
072138 - this review. What follows is a brief overview of the
072139 - current evidence.
072141 - ..
072142 - MicroRNAs (miRNAs) play critical roles in modulating gene
072143 - expression via translational repression or total
072144 - degradation of the target mRNA [329]. MiRNAs mediate
072145 - several exercise adaptations [330,331,332,333,334] and
072146 - demonstrate exercise-induced expression profiles in
072147 - leukocyte subsets [335,336,337,338,339]. Exercise-induced
072148 - increases in WBC miR-186 and miR-96 expression were
072149 - observed after a 30-min exercise bout [283]. In silico
072150 - analysis identified TERF2IP as a potential regulatory
072151 - target of miR-186 and miR-96. Telomeric repeat factor 1 is
072152 - translationally repressed by miR-155 resulting in
072153 - chromosome alterations and telomere fragility [328].
072154 - Animal models indicate that miR-155 expression decreases
072155 - in response to exercise [340]. Expression of TERT mRNA is
072156 - regulated by miR-498 [341]; however, little is known about
072157 - the exercise responsiveness of miR-498.
072159 - ..
072160 - A clear understanding of the role of miRNA-mediated
072161 - telomere homeostasis is still in its infancy. The
072162 - direction of the miRNA-telomere interaction is currently
072163 - unclear; telomere shortening may actually cause
072164 - differential miRNA expression [342]. Most of the
072165 - established miRNA-telomere associations have been observed
072166 - in cancer cell lines, wherein dysregulated telomere
072167 - maintenance mechanisms may have corrupted the observed
072168 - associations. To gain a causal understanding of the role
072169 - of miRNAs in telomere homeostasis, gain/loss of function
072170 - experiments must be conducted in cell lines and animal
072171 - models.
072173 - ..
072174 - Accumulating evidence indicates that global DNA
072175 - methylation may regulate telomere length variability in
072176 - adults [343,344]. Associations between DNA methylation and
072177 - telomere length were initially established in mice [345];
072178 - subsequent human studies identified a positive association
072179 - between global DNA methylation at proximal sub telomeric
072180 - regions and telomerase activity [346]. Little is currently
072181 - known about exercise-induced methylation changes within
072182 - telomeres.
072184 - ..
072185 - Human telomeres have long been considered
072186 - transcriptionally silent; however, recent evidence
072187 - indicates they are transcribed by RNA polymerase II,
072188 - producing a class of long noncoding RNA (lncRNA)
072189 - containing telomeric repeats called TERRA [347,348]. TERRA
072190 - molecules are displaced from telomeres and recruited to
072191 - chromosomal ends through interaction with the telomeric
072192 - structure, including shelterin components TRF1 and TRF2
072193 - [349]. TERRA also interacts with telomeres via the
072194 - formation of RNA:DNA hybrid structures known as R-loops
072195 - [350,351,352,353], which are involved with gene expression
072196 - regulation [354] and transcription termination [355]. In
072197 - shortened or damaged telomeres, TERRA is observed in
072198 - increased levels [356,357,358]. Upregulation of TERRA is
072199 - also observed in instances of DNA damage or loss of TRF2
072200 - [358]. With so much still to learn about lncRNAs such as
072201 - TERRA, a full understanding of their potential
072202 - telomere-regulatory role is several years away.
072204 - ..
072205 - 14. Conclusions
072206 -
072207 - The proposed associations with aging and exercise are
072208 - biologically plausible. Telomere length holds tantalizing
072209 - promise as a biomarker; however, a host of evidential
072210 - inconsistencies and paradoxes must be addressed. Leukocyte
072211 - telomere length is highly variable at birth, a metric
072212 - influenced by genetic inheritance and paternal age at
072213 - conception. It reflects lifelong exposure to oxidative and
072214 - inflammatory burden yet childhood LTL has more predictive
072215 - fidelity than LTL in adulthood or old age. Oscillating
072216 - throughout the lifespan, even inexplicably lengthening
072217 - despite advancing age, mean LTL differs between genders.
072218 - Attrition rates also differ between genders and appear
072219 - dependent upon initial telomere length. Shortening
072220 - trajectories can be further influenced by variable
072221 - exposure to a wide range of environmental stimuli. The
072222 - association between PA is more questionable with 50% of
072223 - studies failing to find a significant association.
072225 - ..
072226 - Investigations into plausible mechanisms have returned
072227 - promising yet inconsistent findings. The prevailing
072228 - consensus is that exercise-induced reductions in
072229 - oxidative stress and inflammation likely mediate the
072230 - effect. The possibility that LTL is a physiological
072231 - epiphenomenon cannot be excluded. Changes in LTL may
072232 - simply be coincidental processes that reflect, without
072233 - directly influencing, the primary mechanism. It is likely
072234 - that telomere length per se is significant only in so much
072235 - as it reflects the resultant phenotype via pathways such
072236 - as senescence-associated inflammation.
072238 - ..
072239 - It has been proposed that evolutionary pressures have
072240 - fine-tuned telomere length to reduce the risk of short and
072241 - long telomere pathologies, namely atherosclerosis and
072242 - cancer [359,360,361]. The long-term consequences of
072243 - manipulating telomere length are not well understood and
072244 - should therefore be approached with equal measures of
072245 - enthusiasm and evidence.
072247 - ..
072248 - 15. Conclusions
072249 -
072250 - The proposed associations with aging and exercise are
072251 - biologically plausible. Telomere length holds tantalizing
072252 - promise as a biomarker; however, a host of evidential
072253 - inconsistencies and paradoxes must be addressed. Leukocyte
072254 - telomere length is highly variable at birth, a metric
072255 - influenced by genetic inheritance and paternal age at
072256 - conception. It reflects lifelong exposure to oxidative and
072257 - inflammatory burden yet childhood LTL has more predictive
072258 - fidelity than LTL in adulthood or old age. Oscillating
072259 - throughout the lifespan, even inexplicably lengthening
072260 - despite advancing age, mean LTL differs between genders.
072261 - Attrition rates also differ between genders and appear
072262 - dependent upon initial telomere length. Shortening
072263 - trajectories can be further influenced by variable
072264 - exposure to a wide range of environmental stimuli. The
072265 - association between PA is more questionable with 50% of
072266 - studies failing to find a significant association.
072268 - ..
072269 - Investigations into plausible mechanisms have returned
072270 - promising yet inconsistent findings. The prevailing
072271 - consensus is that exercise-induced reductions in oxidative
072272 - stress and inflammation likely mediate the effect. The
072273 - possibility that LTL is a physiological epiphenomenon
072274 - cannot be excluded. Changes in LTL may simply be
072275 - coincidental processes that reflect, without directly
072276 - influencing, the primary mechanism. It is likely that
072277 - telomere length per se is significant only in so much as it
072278 - reflects the resultant phenotype via pathways such as
072279 - senescence-associated inflammation.
072281 - ..
072282 - It has been proposed that evolutionary pressures have
072283 - fine-tuned telomere length to reduce the risk of short and
072284 - long telomere pathologies, namely atherosclerosis and
072285 - cancer [359,360,361]. The long-term consequences of
072286 - manipulating telomere length are not well understood and
072287 - should therefore be approached with equal measures of
072288 - enthusiasm and evidence.
072290 - ..
072291 - 16. Future Directions
072292 -
072293 - Telomere and telomerase research is on the brink of truly
072294 - significant contributions to human health and disease
072295 - management. Exciting associations and plausible putative
072296 - mechanisms seem to promise therapeutic targets for the
072297 - future. The extensive associations strongly imply causal
072298 - involvement and warrant closer, more detailed analysis. We
072299 - propose four general areas of future research direction.
072301 - ..
072302 - First, evidence of actual telomere lengthening is lacking.
072303 - Whether an individual can move from the lowest to the
072304 - highest quartile of LTL through lifestyle interventions,
072305 - presumably with an enhanced phenotype, remains an open and
072306 - essential question. Given the propensity for LTL to track
072307 - through the lifespan [82], the capacity of PA to modulate a
072308 - seemingly centrally-driven measure must be addressed. If
072309 - actual telomere lengthening is identified, it must then be
072310 - determined whether such lengthening lies within the
072311 - considerable natural ebb and flow of telomere length
072312 - dynamics over time.
072314 - ..
072315 - The second future direction regards selection of the most
072316 - relevant telomeric metric. Evidence suggests that the
072317 - proportion of short telomeres may be more consequential
072318 - than mean LTL given the ability of very long telomeres
072319 - within a cell to skew the mean [362,363]. Studies reporting
072320 - longer LTL in the physically active should also report the
072321 - relative proportion of the shortest telomeres.
072323 - ..
072324 - The third future direction regards the use of mediation
072325 - analysis to quantify positive and negative telomere
072326 - instigators. Mediation analysis models a hypothesized
072327 - causal chain in which a variable of interest influences an
072328 - intervening mediator variable which in turn mediates the
072329 - outcome variable. This allows the effect of exposure to the
072330 - mediator on the outcome variable. Mediation analysis
072331 - quantifies the exposure of likely mediating factors such as
072332 - oxidative stress, inflammation and age. Analysis of this
072333 - sort would also reveal whether changes in telomere length
072334 - can occur independently of factors like oxidative stress
072335 - and inflammation. As an example, a recent study found that
072336 - fasting insulin partially mediates the association between
072337 - genetically determined LTL and CHD risk [364].
072339 - ..
072340 - The final proposed direction is the development of a
072341 - regularly updated international consensus document on
072342 - telomere research methodology. Developed by an
072343 - international consortium of leading telomere researchers,
072344 - this document could outline: (i) preferred measurement
072345 - techniques; (ii) acceptable coefficients of variation;
072346 - (iii) universally accepted definitions and criteria for
072347 - long and short telomeres and (iv) rigorous methods of data
072348 - interpretation. In time, publishing in accordance with such
072349 - guidelines would become the standard expectation with
072350 - reputational costs incurred for discrepant methodologies.
072352 - ..
072353 - Many exciting discoveries are undoubtedly yet to come from
072354 - the field; however, many of these may be lost to
072355 - unacceptably large measurement variations and inconsistent
072356 - methodologies. The irresistible logicality of the reported
072357 - telomeric associations risks the premature inference of
072358 - causation. The final quantum leap to be made will be the
072359 - translation of benchtop findings into clinically relevant
072360 - interventions. Only then will the ends have justified the
072361 - means.
072362 -
072364 - ..
072365 - Author Contributions
072367 - ..
072368 - Warrick Chilton conceived and composed this manuscript.
072369 - Fadi Charchar and Brendan O?Brien edited and commented upon
072370 - the final draft. All authors reviewed the manuscript.
072372 - ..
072373 - Conflicts of Interest
072375 - ..
072376 - The authors declare no conflict of interest.
072377 -
072379 - ..
072380 - References
072381 -
072382 - 1. United-Nations World Population Ageing 2015. [(accessed
072383 - on 7 March 2017)]; Available online:
072384 -
072385 - http://www.un.org/en/development/desa/population/publications/index.shtml
072387 - ..
072388 - 2. Murray C.J.L., Barber R.M., Foreman K.J., Ozgoren A.A.,
072389 - Abd-Allah F., Abera S.F., Aboyans V., Abraham J.P.,
072390 - Abubakar I., Abu-Raddad L.J., et al. Global, regional
072391 - and national disability-adjusted life years (DALYs) for
072392 - 306 diseases and injuries and healthy life expectancy
072393 - (HALE) for 188 countries, 1990?2013: Quantifying the
072394 - epidemiological transition. Lancet. 2015;386:2145?2191.
072395 - [PMC free article] [PubMed]
072397 - ..
072398 - 3. Strihler B. Times, Cells and Aging. Academic Press;
072399 - New York, NY, USA: 1962.
072401 - ..
072402 - 4. Lowsky D.J., Olshansky S.J., Bhattacharya J.,
072403 - Goldman D.P. Heterogeneity in healthy aging. J.
072404 - Gerontol. Ser. A Biol. Sci. Med. Sci. 2014;69:640?649.
072405 - [PMC free article] [PubMed]
072407 - ..
072408 - 5. Prospective Studies Collaboration Body-mass index
072409 - and cause-specific mortality in 900,000 adults:
072410 - Collaborative analyses of 57 prospective studies.
072411 - Lancet. 2009;373:1083?1096. [PMC free article] [PubMed]
072413 - ..
072414 - 6. Brown L., Needham B., Ailshire J. Telomere length among
072415 - older U.S. Adults: Differences by race/ethnicity, gender
072416 - and age. J. Aging Health. 2016;29:1350?1366.
072418 - ..
072419 - 7. Needham B.L., Adler N., Gregorich S., Rehkopf D., Lin
072420 - J., Blackburn E.H., Epel E.S. Socioeconomic status,
072421 - health behavior and leukocyte telomere length in the
072422 - national health and nutrition examination survey,
072423 - 1999?2002. Soc. Sci. Med. 2013;85:1?8. [PMC free
072424 - article] [PubMed]
072426 - ..
072427 - 8. De Lange T. Shelterin: The protein complex that
072428 - shapes and safeguards human telomeres. Genes Dev.
072429 - 2005;19:2100?2110. [PubMed]
072431 - ..
072432 - 9. Olovnikov A.M. Principle of marginotomy in template
072433 - synthesis of polynucleotides. Dokl. Akad. Nauk SSSR.
072434 - 1971;201:1496?1499. [PubMed]
072436 - ..
072437 - 10. Watson J.D. Origin of concatemeric T7 DNA. Nat. New
072438 - Biol. 1972;239:197?201. [PubMed]
072440 - ..
072441 - 11. Griffith J.D., Comeau L., Rosenfield S., Stansel
072442 - R.M., Bianchi A., Moss H., de Lange T. Mammalian
072443 - telomeres end in a large duplex loop. Cell.
072444 - 1999;97:503?514. [PubMed]
072446 - ..
072447 - 12. Greider C.W., Blackburn E.H. The telomere terminal
072448 - transferase of tetrahymena is a ribonucleoprotein
072449 - enzyme with two kinds of primer specificity. Cell.
072450 - 1987;51:887?898. [PubMed]
072452 - ..
072453 - 13. Blackburn E.H., Greider C.W., Henderson E., Lee
072454 - M.S., Shampay J., Shippen-Lentz D. Recognition and
072455 - elongation of telomeres by telomerase. Genome.
072456 - 1989;31:553?560. [PubMed]
072458 - ..
072459 - 14. Von Zglinicki T. Role of oxidative stress in
072460 - telomere length regulation and replicative senescence.
072461 - Ann. N. Y. Acad. Sci. 2000;908:99?110. [PubMed]
072463 - ..
072464 - 15. Bekaert S., De Meyer T., Rietzschel E.R., De Buyzere
072465 - M.L., de Bacquer D., Langlois M., Segers P., Cooman L.,
072466 - van Damme P., Cassiman P. Telomere length and
072467 - cardiovascular risk factors in a middle-aged
072468 - population free of overt cardiovascular disease.
072469 - J. Anat. 2007;6:639?647. [PubMed]
072471 - ..
072472 - 16. Vasan R.S., Demissie S., Kimura M., Cupples
072473 - L.A., Rifai N., White C., Wang T.J., Gardner
072474 - J.P., Cao X., Benjamin E.J., et al. Association
072475 - of leukocyte telomere length with circulating
072476 - biomarkers of the renin-angiotensin-aldosterone
072477 - system: The framingham heart study. Circulation.
072478 - 2008;117:1138?1144. [PMC free article] [PubMed]
072480 - ..
072481 - 17. Valdes A.M., Andrew T., Gardner J.P., Kimura M.,
072482 - Oelsner E., Cherkas L.F., Aviv A., Spector T.D.
072483 - Obesity, cigarette smoking and telomere length
072484 - in women. Lancet. 2005;366:662?664. [PubMed]
072486 - ..
072487 - 18. Harris S.E., Deary I.J., MacIntyre A., Lamb K.J.,
072488 - Radhakrishnan K., Starr J.M., Whalley L.J., Shiels
072489 - P.G. The association between telomere length,
072490 - physical health, cognitive ageing and mortality
072491 - in non-demented older people. Neurosci. Lett.
072492 - 2006;406:260?264. [PubMed]
072494 - ..
072495 - 19. Puterman E., Lin J., Blackburn E., O?Donovan A.,
072496 - Adler N., Epel E. The power of exercise: Buffering
072497 - the effect of chronic stress on telomere length.
072498 - PLoS ONE. 2010;5:e10837 [PMC free article] [PubMed]
072500 - ..
072501 - 20. Cherkas L.F., Hunkin J.L., Kato B.S., Richards J.B.,
072502 - Gardner J.P., Surdulescu G.L., Kimura M., Lu X.,
072503 - Spector T.D., Aviv A. The association between physical
072504 - activity in leisure time and leukocyte telomere length.
072505 - Arch. Intern. Med. 2008;168:154?158. [PubMed]
072507 - ..
072508 - 21. Ludlow A.T., Ludlow L.W., Roth S.M. Do telomeres adapt
072509 - to physiological stress? Exploring the effect of
072510 - exercise on telomere length and telomere-related
072511 - proteins. BioMed Res. Int. 2013;2013:15. [PMC free
072512 - article] [PubMed]
072514 - ..
072515 - 22. Mather K.A., Jorm A.F., Parslow R.A., Christensen H.
072516 - Is telomere length a biomarker of aging? A review. J.
072517 - Gerontol. Ser. A. 2011;66:202?213. [PubMed]
072519 - ..
072520 - 23. Hayflick L., Moorhead P.S. The serial cultivation of
072521 - human diploid cell strains. Exp. Cell Res.
072522 - 1961;25:585?621. doi: 10.1016/0014-4827(61)90192-6.
072523 - [PubMed] [CrossRef]
072525 - ..
072526 - 24. Ritschka B., Storer M., Mas A., Heinzmann F., Ortells
072527 - M.C., Morton J.P., Sansom O.J., Zender L., Keyes W.M.
072528 - The senescence-associated secretory phenotype induces
072529 - cellular plasticity and tissue regeneration. Genes Dev.
072530 - 2017;31:172?183. doi: 10.1101/gad.290635.116. [PMC
072531 - free article] [PubMed] [CrossRef]
072533 - ..
072534 - 25. Acosta J.C., Banito A., Wuestefeld T., Georgilis A.,
072535 - Janich P., Morton J.P., Athineos D., Kang T.-W.,
072536 - Lasitschka F., Andrulis M., et al. A complex secretory
072537 - program orchestrated by the inflammasome controls
072538 - paracrine senescence. Nat. Cell Biol. 2013;15:978?990.
072539 - doi: 10.1038/ncb2784. [PMC free article] [PubMed]
072540 - [CrossRef]
072542 - ..
072543 - 26. Munoz-Espin D., Canamero M., Maraver A., Gomez-Lopez G.,
072544 - Contreras J., Murillo-Cuesta S., Rodriguez-Baeza A.,
072545 - Varela-Nieto I., Ruberte J., Collado M., et al.
072546 - Programmed cell senescence during mammalian embryonic
072547 - development. Cell. 2013;155:1104?1118. doi:
072548 - 10.1016/j.cell.2013.10.019. [PubMed] [CrossRef]
072550 - ..
072551 - 27. Bhatia-Dey N., Kanherkar R.R., Stair S.E., Makarev
072552 - E.O., Csoka A.B. Cellular senescence as the causal
072553 - nexus of aging. Front. Genet. 2016;7 doi:
072554 - 10.3389/fgene.2016.00013. [PMC free article]
072555 - [PubMed] [CrossRef]
072557 - ..
072558 - 28. Demaria M., O?Leary M.N., Chang J., Shao L., Liu
072559 - S., Alimirah F., Koenig K., Le C., Mitin N., Deal
072560 - A.M., et al. Cellular senescence promotes adverse
072561 - effects of chemotherapy and cancer relapse. Cancer
072562 - Discov. 2017;7:165?176. doi:
072563 - 10.1158/2159-8290.CD-16-0241. [PMC free article]
072564 - [PubMed] [CrossRef]
072566 - ..
072567 - 29. Campisi J. Cellular senescence as a
072568 - tumor-suppressor mechanism. Trends Cell Biol.
072569 - 2001;11:S27?S31. doi:
072570 - 10.1016/S0962-8924(01)82148-6. [PubMed] [CrossRef]
072572 - ..
072573 - 30. Harley C.B., Futcher A.B., Greider C.W. Telomeres
072574 - shorten during ageing of human fibroblasts. Nature.
072575 - 1990;345:458?460. doi: 10.1038/345458a0. [PubMed]
072576 - [CrossRef]
072578 - ..
072579 - 31. Artandi S.E., Attardi L.D. Pathways connecting telomeres
072580 - and p53 in senescence, apoptosis and cancer. Biochem.
072581 - Biophys. Res. Commun. 2005;331:881?890. doi:
072582 - 10.1016/j.bbrc.2005.03.211. [PubMed] [CrossRef]
072584 - ..
072585 - 32. Alcorta D.A., Xiong Y., Phelps D., Hannon G., Beach D.,
072586 - Barrett J.C. Involvement of the cyclin-dependent kinase
072587 - inhibitor p16 (INK4A) in replicative senescence of
072588 - normal human fibroblasts. Proc. Natl. Acad. Sci. USA.
072589 - 1996;93:13742?13747. doi: 10.1073/pnas.93.24.13742. [PMC
072590 - free article] [PubMed] [CrossRef]
072592 - ..
072593 - 33. Rodier F., Muñoz D.P., Teachenor R., Chu V., Le O.,
072594 - Bhaumik D., Coppé J.-P., Campeau E., Beauséjour C.M.,
072595 - Kim S.-H., et al. DNA-scars: Distinct nuclear structures
072596 - that sustain damage-induced senescence growth arrest and
072597 - inflammatory cytokine secretion. J. Cell Sci.
072598 - 2011;124:68?81. doi: 10.1242/jcs.071340. [PMC free
072599 - article] [PubMed] [CrossRef]
072601 - ..
072602 - 34. Takahashi A., Ohtani N., Yamakoshi K., Iida S., Tahara
072603 - H., Nakayama K., Nakayama K.I., Ide T., Saya H., Hara E.
072604 - Mitogenic signaling and the p16ink4a-Rb pathway
072605 - cooperate to enforce irreversible cellular senescence.
072606 - Nat. Cell Biol. 2006;8:1291?1297.
072607 - doi: 10.1038/ncb1491. [PubMed] [CrossRef]
072609 - ..
072610 - 35. Fumagalli M., Rossiello F., Clerici M., Barozzi S.,
072611 - Cittaro D., Kaplunov J.M., Bucci G., Dobreva M., Matti
072612 - V., Beausejour C.M., et al. Telomeric DNA damage is
072613 - irreparable and causes persistent DNA-damage-response
072614 - activation. Nat. Cell Biol. 2012;14:355?365. doi:
072615 - 10.1038/ncb2466. [PMC free
072616 - article] [PubMed] [CrossRef]
072618 - ..
072619 - 36. Zhou X., Perez F., Han K., Jurivich D.A. Clonal
072620 - senescence alters endothelial icam-1 function. Mech.
072621 - Ageing Dev. 2006;127:779?785.
072622 - doi: 10.1016/j.mad.2006.07.003. [PubMed] [CrossRef]
072624 - ..
072625 - 37. Minamino T., Orimo M., Shimizu I., Kunieda T., Yokoyama
072626 - M., Ito T., Nojima A., Nabetani A., Oike Y., Matsubara
072627 - H., et al. A crucial role for adipose tissue p53 in the
072628 - regulation of insulin resistance. Nat. Med.
072629 - 2009;15:1082?1087. doi: 10.1038/nm.2014. [PubMed]
072630 - [CrossRef]
072632 - ..
072633 - 38. Shimizu I., Yoshida Y., Katsuno T., Tateno K.,
072634 - Okada S., Moriya J., Yokoyama M., Nojima A., Ito T.,
072635 - Zechner R., et al. P53-induced adipose tissue
072636 - inflammation is critically involved in the development
072637 - of insulin resistance in heart failure. Cell Metab.
072638 - 2012;15:51?64. doi: 10.1016/j.cmet.2011.12.006.
072639 - [PubMed] [CrossRef]
072641 - ..
072642 - 39. Martin J.A., Brown T.D., Heiner A.D., Buckwalter
072643 - J.A. Chondrocyte senescence, joint loading and
072644 - osteoarthritis. Clin. Orthop. Relat. Res.
072645 - 2004;427:S96?S103. doi:
072646 - 10.1097/01.blo.0000143818.74887.b1. [PubMed]
072647 - [CrossRef]
072649 - ..
072650 - 40. Liton P.B., Challa P., Stinnett S., Luna C.,
072651 - Epstein D.L., Gonzalez P. Cellular senescence in
072652 - the glaucomatous outflow pathway. Exp. Gerontol.
072653 - 2005;40:745?748. doi: 10.1016/j.exger.2005.06.005.
072654 - [PMC free article] [PubMed] [CrossRef]
072656 - ..
072657 - 41. Baker D., Wijshake T., Tchkonia T., LeBrasseur
072658 - N., Childs B., van de Sluis B., Kirkland J., van
072659 - Deursen J. Clearance of p16ink4a-positive
072660 - senescent cells delays ageing-associated
072661 - disorders. Nature. 2011;479:232?236. doi:
072662 - 10.1038/nature10600. [PMC free article] [PubMed]
072663 - [CrossRef]
072665 - ..
072666 - 42. Van Deursen J.M. The role of senescent cells
072667 - in ageing. Nature. 2014;509:439?446. doi:
072668 - 10.1038/nature13193. [PMC free article] [PubMed]
072669 - [CrossRef]
072671 - ..
072672 - 43. Coppé J.-P., Desprez P.-Y., Krtolica A.,
072673 - Campisi J. The senescence-associated secretory
072674 - phenotype: The dark side of tumor suppression.
072675 - Ann. Rev. Pathol. 2010;5:99?118. doi:
072676 - 10.1146/annurev-pathol-121808-102144. [PMC free
072677 - article] [PubMed] [CrossRef]
072679 - ..
072680 - 44. Thangavel C., Dean J.L., Ertel A., Knudsen
072681 - K.E., Aldaz C.M., Witkiewicz A.K., Clarke R.,
072682 - Knudsen E.S. Therapeutically activating RB:
072683 - Reestablishing cell cycle control in endocrine
072684 - therapy-resistant breast cancer. Endocr. Relat.
072685 - Cancer. 2011;18:333?345. doi: 10.1530/ERC-10-0262.
072686 - [PMC free article] [PubMed] [CrossRef]
072688 - ..
072689 - 45. Castle S.C., Uyemuraabc K., Crawford W.,
072690 - Wongab W., Klaustermeyer W.B., Makinodan T.
072691 - Age-related impaired proliferation of peripheral
072692 - blood mononuclear cells is associated with an
072693 - increase in both IL-10 and IL-12. Exp. Gerontol.
072694 - 1999;34:243?252. doi:
072695 - 10.1016/S0531-5565(98)00064-3. [PubMed] [CrossRef]
072697 - ..
072698 - 46. Froelich C.J., Burkett J.S., Guiffaut S., Kingsland R.,
072699 - Brauner D. Phytohemagglutinin induced proliferation by
072700 - aged lymphocytes: Reduced expression of high affinity
072701 - interleukin-2 receptors and interleukin-2 secretion.
072702 - Life Sci. 1988;43:1583?1590. doi:
072703 - 10.1016/0024-3205(88)90529-2. [PubMed] [CrossRef]
072705 - ..
072706 - 47. Effros R.B., Allsopp R., Chiu C.P., Hausner M.A., Hirji
072707 - K., Wang L., Harley C.B., Villeponteau B., West M.D.,
072708 - Giorgi J.V. Shortened telomeres in the expanded
072709 - CD28-CD8+ cell subset in HIV disease implicate
072710 - replicative senescence in HIV pathogenesis. AIDS.
072711 - 1996;10:F17?F22. doi: 10.1097/00002030-199607000-00001.
072712 - [PubMed] [CrossRef]
072714 - ..
072715 - 48. Franceschi C., Bonafè M., Valensin S. Human
072716 - immunosenescence: The prevailing of innate immunity,
072717 - the failing of clonotypic immunity and the filling of
072718 - immunological space. Vaccine. 2000;18:1717?1720. doi:
072719 - 10.1016/S0264-410X(99)00513-7. [PubMed] [CrossRef]
072721 - ..
072722 - 49. Franceschi C., Capri M., Monti D., Giunta S., Olivieri
072723 - F., Sevini F., Panourgia M.P., Invidia L., Celani L.,
072724 - Scurti M., et al. Inflammaging and anti-inflammaging:
072725 - A systemic perspective on aging and longevity emerged
072726 - from studies in humans. Mech. Ageing Dev.
072727 - 2007;128:92?105. doi:
072728 - 10.1016/j.mad.2006.11.016. [PubMed] [CrossRef]
072730 - ..
072731 - 50. Targonski P.V., Jacobson R.M., Poland G.A.
072732 - Immunosenescence: Role and measurement in influenza
072733 - vaccine response among the elderly. Vaccine.
072734 - 2007;25:3066?3069. doi:
072735 - 10.1016/j.vaccine.2007.01.025. [PubMed] [CrossRef]
072737 - ..
072738 - 51. Allsopp R.C., Vaziri H., Patterson C., Goldstein S.,
072739 - Younglai E.V., Futcher A.B., Greider C.W., Harley C.B.
072740 - Telomere length predicts replicative capacity of human
072741 - fibroblasts. Proc. Natl. Acad. Sci. USA.
072742 - 1992;89:10114?10118. doi:
072743 - 10.1073/pnas.89.21.10114. [PMC free
072744 - article] [PubMed] [CrossRef]
072746 - ..
072747 - 52. Brosh R.M., Jr., von Kobbe C., Sommers J.A., Karmakar P.,
072748 - Opresko P.L., Piotrowski J., Dianova I., Dianov G.L.,
072749 - Bohr V.A. Werner syndrome protein interacts with human
072750 - flap endonuclease 1 and stimulates its cleavage
072751 - activity. EMBO J. 2001;20:5791?5801. doi:
072752 - 10.1093/emboj/20.20.5791. [PMC free
072753 - article] [PubMed] [CrossRef]
072755 - ..
072756 - 53. Crabbe L., Verdun R.E., Haggblom C.I., Karlseder J.
072757 - Defective telomere lagging strand synthesis in cells
072758 - lacking wrn helicase activity. Science.
072759 - 2004;306:1951?1953. doi:
072760 - 10.1126/science.1103619. [PubMed] [CrossRef]
072762 - ..
072763 - 54. Crabbe L., Jauch A., Naeger C.M., Holtgreve-Grez H.,
072764 - Karlseder J. Telomere dysfunction as a cause of genomic
072765 - instability in werner syndrome. Proc. Natl. Acad. Sci.
072766 - USA. 2007;104:2205?2210. doi:
072767 - 10.1073/pnas.0609410104. [PMC free
072768 - article] [PubMed] [CrossRef]
072770 - ..
072771 - 55. Decker M.L., Chavez E., Vulto I., Lansdorp P.M.
072772 - Telomere length in hutchinson-gilford progeria
072773 - syndrome. Mech. Ageing Dev. 2009;130:377?383. doi:
072774 - 10.1016/j.mad.2009.03.001. [PubMed] [CrossRef]
072776 - ..
072777 - 56. Johnson T.E. Recent results: Biomarkers of aging. Exp.
072778 - Gerontol. 2006;41:1243?1246. doi:
072779 - 10.1016/j.exger.2006.09.006. [PubMed] [CrossRef]
072780 -
072781 -
072783 - ..
072784 - 57. Simm A., Nass N., Bartling B., Hofmann B., Silber
072785 - R.-E., Navarrete Santos A. Potential biomarkers of
072786 - ageing. Biol. Chem. 2008;389:257?265. doi:
072787 - 10.1515/BC.2008.034. [PubMed] [CrossRef]
072789 - ..
072790 - 58. Sanders J.L., Newman A.B. Telomere length in
072791 - epidemiology: A biomarker of aging, age-related
072792 - disease, both, or neither? Epidemiol. Rev.
072793 - 2013;35:112?131. doi: 10.1093/epirev/mxs008. [PMC
072794 - free article] [PubMed] [CrossRef]
072796 - ..
072797 - 59. Steenstrup T., Hjelmborg J.V., Kark J.D.,
072798 - Christensen K., Aviv A. The telomere lengthening
072799 - conundrum?Artifact or biology? Nucleic Acids Res.
072800 - 2013;41:e131. doi: 10.1093/nar/gkt370. [PMC free
072801 - article] [PubMed] [CrossRef]
072803 - ..
072804 - 60. Andrew T., Aviv A., Falchi M., Surdulescu G.L.,
072805 - Gardner J.P., Lu X., Kimura M., Kato B.S., Valdes
072806 - A.M., Spector T.D. Mapping genetic loci that
072807 - determine leukocyte telomere length in a large sample
072808 - of unselected female sibling pairs. Am. J. Hum.
072809 - Genet. 2006;78:480?486. doi: 10.1086/500052. [PMC
072810 - free article] [PubMed] [CrossRef]
072812 - ..
072813 - 61. Codd V., Mangino M., van der Harst P., Braund
072814 - P.S., Kaiser M., Beveridge A.J., Rafelt S., Moore J.,
072815 - Nelson C., Soranzo N. Common variants near TERC are
072816 - associated with mean telomere length. Nat. Genet.
072817 - 2010;42:197?199. doi: 10.1038/ng.532. [PMC free
072818 - article] [PubMed] [CrossRef]
072820 - ..
072821 - 62. Levy D., Neuhausen S.L., Hunt S.C., Kimura M.,
072822 - Hwang S., Chen W., Bis J.C., Fitzpatrick A.L., Smith
072823 - E., Johnson A.D., et al. Genome-wide association
072824 - identifies OBFC1 as a locus involved in human
072825 - leukocyte telomere biology. Proc. Natl. Acad. Sci.
072826 - USA. 2010;107:9293?9298. doi:
072827 - 10.1073/pnas.0911494107. [PMC free article] [PubMed]
072828 - [CrossRef]
072830 - ..
072831 - 63. Mangino M., Brouilette S., Braund P., Tirmizi N.,
072832 - Vasa-Nicotera M., Thompson J.R., Samani N.J. A
072833 - regulatory SNP of the BICD1 gene contributes to
072834 - telomere length variation in humans. Hum. Mol. Genet.
072835 - 2008;17:2518?2523. doi: 10.1093/hmg/ddn152. [PubMed]
072836 - [CrossRef]
072838 - ..
072839 - 64. Mangino M., Richards J.B., Soranzo N., Zhai G., Aviv
072840 - A., Valdes A.M., Samani N.J., Deloukas P., Spector
072841 - T.D. A genome-wide association sutdy identifies a
072842 - novel locus on chromosome 18q12.2 influencing white
072843 - cell telomere length. J. Med. Genet. 2009;46:451?454.
072844 - doi: 10.1136/jmg.2008.064956. [PMC free article]
072845 - [PubMed] [CrossRef]
072847 - ..
072848 - 65. Vasa-Nicotera M., Brouilette S., Mangino M.,
072849 - Thompson J.R., Braund P., Clemitson J.-R., Mason A.,
072850 - Bodycote C.L., Raleigh S.M., Louis E., et al. Mapping
072851 - of a major locus that determines telomere length in
072852 - humans. Am. J. Hum. Genet. 2005;76:147?151. doi:
072853 - 10.1086/426734. [PMC free article] [PubMed]
072854 - [CrossRef]
072856 - ..
072857 - 66. Lansdorp P.M., Verwoerd N.P., van de Rijke F.M.,
072858 - Dragowska V., Little M.T., Dirks R.W., Raap A.K.,
072859 - Tanke H.J. Heterogeneity in telomere length of human
072860 - chromosomes. Hum. Mol. Genet. 1996;5:685?691. doi:
072861 - 10.1093/hmg/5.5.685. [PubMed] [CrossRef]
072863 - ..
072864 - 67. Martens U.M., Zijlmans J.M.J.M., Poon S.S.S.,
072865 - Dragowska W., Yui J., Chavez E.A., Ward R.K.,
072866 - Lansdorp P.M. Short telomeres on human chromosome
072867 - 17p. Nat. Genet. 1998;18:76?80. doi:
072868 - 10.1038/ng0198-76. [PubMed] [CrossRef]
072870 - ..
072871 - 68. Müezzinler A., Zaineddin A.K., Brenner H. A
072872 - systematic review of leukocyte telomere length and
072873 - age in adults. Ageing Res. Rev. 2013;12:509?519. doi:
072874 - 10.1016/j.arr.2013.01.003. [PubMed] [CrossRef]
072876 - ..
072877 - 69. Rode L., Nordestgaard B.G., Bojesen S.E. Peripheral
072878 - blood leukocyte telomere length and mortality among
072879 - 64,637 individuals from the general population. J.
072880 - Natl. Cancer Inst. 2015;107:djv074. doi:
072881 - 10.1093/jnci/djv074. [PubMed] [CrossRef]
072883 - ..
072884 - 70. Tucker L.A. Physical activity and telomere length
072885 - in U.S. Men and women: An NHANES investigation. Prev.
072886 - Med. 2017;100:145?151. doi: 10.1016/j.ypmed.2017.04.027.
072887 - [PubMed] [CrossRef]
072889 - ..
072890 - 71. Marioni R.E., Harris S.E., Shah S., McRae A.F., von
072891 - Zglinicki T., Martin-Ruiz C., Wray N.R., Visscher
072892 - P.M., Deary I.J. The epigenetic clock and telomere
072893 - length are independently associated with chronological
072894 - age and mortality. Int. J. Epidemiol. 2016;45:424?432.
072895 - doi: 10.1093/ije/dyw041. [PMC free
072896 - article] [PubMed] [CrossRef]
072898 - ..
072899 - 72. De Meyer T., Rietzschel E.R., de Buyzere M.L., de
072900 - Bacquer D., van Criekinge W., de Backer G.G., Gillebert
072901 - T.C., van Oostveldt P., Bekaert S. Paternal age at
072902 - birth is an important determinant of offspring
072903 - telomere length. Hum. Mol. Genet. 2007;16:3097?3102.
072904 - doi: 10.1093/hmg/ddm271. [PubMed] [CrossRef]
072906 - ..
072907 - 73. Kimura M., Cherkas L.F., Kato B.S., Demissie S.,
072908 - Hjelmborg J.B., Brimacombe M., Cupples A., Hunkin
072909 - J.L., Gardner J.P., Lu X., et al. Offspring?s
072910 - leukocyte telomere length, paternal age and telomere
072911 - elongation in sperm. PLoS Genet. 2008;4:e37 doi:
072912 - 10.1371/journal.pgen.0040037. [PMC free
072913 - article] [PubMed] [CrossRef]
072915 - ..
072916 - 74. Broer L., Codd V., Nyholt D.R., Deelen J., Mangino
072917 - M., Willemsen G., Albrecht E., Amin N., Beekman M., de
072918 - Geus E.J. Meta-analysis of telomere length in 19713
072919 - subjects reveals high heritability, stronger maternal
072920 - inheritance and a paternal age effect. Eur. J. Hum.
072921 - Genet. 2013;21:1163?1168. doi:
072922 - 10.1038/ejhg.2012.303. [PMC free
072923 - article] [PubMed] [CrossRef]
072925 - ..
072926 - 75. Aviv A., Chen W., Gardner J.P., Kimura M.,
072927 - Brimacombe M., Cao X., Srinivasan S.R., Berenson
072928 - G.S. Leukocyte telomere dynamics: Longitudinal
072929 - findings among young adults in the bogalusa heart
072930 - study. Am. J. Epidemiol. 2009;169:323?329. doi:
072931 - 10.1093/aje/kwn338. [PMC free
072932 - article] [PubMed] [CrossRef]
072934 - ..
072935 - 76. Nordfjäll K., Svenson U., Norrback K.-F., Adolfsson R.,
072936 - Lenner P., Roos G. The individual blood cell telomere
072937 - attrition rate is telomere length dependent. PLoS
072938 - Genet. 2009;5:e1000375 doi:
072939 - 10.1371/journal.pgen.1000375. [PMC free article]
072940 - [PubMed] [CrossRef]
072942 - ..
072943 - 77. Graakjaer J., Pascoe L., Der-Sarkissian H., Thomas G.,
072944 - Kolvraa S., Christensen K., Londoño-Vallejo J.-A. The
072945 - relative lengths of individual telomeres are defined in
072946 - the zygote and strictly maintained during life. Aging
072947 - Cell. 2004;3:97?102. doi:
072949 - ..
072950 - 78. Aubert G., Baerlocher G.M., Vulto I., Poon S.S.,
072951 - Lansdorp P.M. Collapse of telomere homeostasis in
072952 - hematopoietic cells caused by heterozygous mutations in
072953 - telomerase genes. PLoS Genet. 2012;8:e1002696 doi:
072954 - 10.1371/journal.pgen.1002696. [PMC free article]
072955 - [PubMed] [CrossRef]
072957 - ..
072958 - 79. Daniali L., Benetos A., Susser E., Kark J.D., Labat C.,
072959 - Kimura M., Desai K., Granick M., Aviv A. Telomeres
072960 - shorten at equivalent rates in somatic tissues of
072961 - adults. Nat. Commun. 2013;4:1597. doi:
072962 - 10.1038/ncomms2602. [PMC free article] [PubMed]
072963 - [CrossRef]
072965 - ..
072966 - 80. Sidorov I., Kimura M., Yashin A., Aviv A^] Leukocyte
072967 - telomere dynamics and human hematopoietic stem cell
072968 - kinetics during somatic growth. Exp. Hematol.
072969 - 2009;37:514?524. doi: 10.1016/j.exphem.2008.11.009.
072970 - [PubMed] [CrossRef]
072972 - ..
072973 - 81. Von Zglinicki T., Martin-Ruiz C. Telomeres as
072974 - biomarkers for ageing and age-related diseases. Curr.
072975 - Mol. Med. 2005;5:197?203. doi:
072976 - 10.2174/1566524053586545. [PubMed] [CrossRef]
072978 - ..
072979 - 82. Benetos A., Kark J.D., Susser E., Kimura M., Sinnreich
072980 - R., Chen W., Steenstrup T., Christensen K., Herbig U.,
072981 - von Bornemann Hjelmborg J., et al. Tracking and fixed
072982 - ranking of leukocyte telomere length across the adult
072983 - life course. Aging Cell. 2013;12:615?621. doi:
072984 - 10.1111/acel.12086. [PMC free article] [PubMed]
072985 - [CrossRef]
072987 - ..
072988 - 83. Verhulst S., Dalgård C., Labat C., Kark J.D., Kimura
072989 - M., Christensen K., Toupance S., Aviv A., Kyvik K.O.,
072990 - Benetos A. A short leucocyte telomere length is
072991 - associated with development of insulin resistance.
072992 - Diabetologia. 2016;59:1258?1265. doi:
072993 - 10.1007/s00125-016-3915-6. [PubMed] [CrossRef]
072995 - ..
072996 - 84. Grasman J., Salomons H.M., Verhulst S. Stochastic
072997 - modeling of length-dependent telomere shortening in
072998 - corvus monedula. J. Theor. Biol. 2011;282:1?6. doi:
072999 - 10.1016/j.jtbi.2011.04.026. [PubMed] [CrossRef]
073001 - ..
073002 - 85. Hemann M.T., Strong M.A., Hao L.-Y., Greider C.W. The
073003 - shortest telomere, not average telomere length, is
073004 - critical for cell viability and chromosome stability.
073005 - Cell. 2001;107:67?77. doi:
073006 - 10.1016/S0092-8674(01)00504-9. [PubMed] [CrossRef]
073008 - ..
073009 - 86. Martens U.M., Chavez E.A., Poon S.S.S., Schmoor C.,
073010 - Lansdorp P.M. Accumulation of short telomeres in human
073011 - fibroblasts prior to replicative senescence. Exp. Cell
073012 - Res. 2000;256:291?299. doi: 10.1006/excr.2000.4823.
073013 - [PubMed] [CrossRef]
073015 - ..
073016 - 87. Chen W., Kimura M., Kim S., Cao X., Srinivasan S.R.,
073017 - Berenson G.S., Kark J.D., Aviv A. Longitudinal versus
073018 - cross-sectional evaluations of leukocyte telomere
073019 - length dynamics: Age-dependent telomere shortening is
073020 - the rule. J. Gerontol. Ser. A. 2011;66:312?319. doi:
073021 - 10.1093/gerona/glq223. [PMC free article] [PubMed]
073022 - [CrossRef]
073024 - ..
073025 - 88. Ehrlenbach S., Willeit P., Kiechl S., Willeit J.,
073026 - Reindl M., Schanda K., Kronenberg F., Brandstatter A.
073027 - Influences on the reduction of relative telomere length
073028 - over 10 years in the population-based bruneck study:
073029 - Introduction of a well-controlled high-throughput
073030 - assay. Int. J. Epidemiol. 2009;38:1725?1734. doi:
073031 - 10.1093/ije/dyp273. [PubMed] [CrossRef]
073033 - ..
073034 - 89. Farzaneh-Far R., Lin J., Epel E., Lapham K., Blackburn E., Whooley M.A. Telomere length trajectory and its determinants in persons with coronary artery disease: Longitudinal findings from the heart and soul study. PLoS ONE. 2010;5:e8612 doi: 10.1371/journal.pone.0008612. [PMC free article] [PubMed] [CrossRef]
073036 - ..
073037 - 90. Gardner J.P., Li S., Srinivasan S.R., Chen W., Kimura
073038 - M., Lu X., Berenson G.S., Aviv A. Rise in insulin
073039 - resistance is associated with escalated telomere
073040 - attrition. Circulation. 2005;111:2171?2177. doi:
073041 - 10.1161/01.CIR.0000163550.70487.0B. [PubMed] [CrossRef]
073043 - ..
073044 - 91. Houben J.M., Giltay E.J., Rius-Ottenheim N., Hageman
073045 - G.J., Kromhout D. Telomere length and mortality in
073046 - elderly men: The zutphen elderly study. J. Gerontol.
073047 - Ser. A Biol. Sci. Med. Sci. 2011;66:38?44. doi:
073048 - 10.1093/gerona/glq164. [PubMed] [CrossRef]
073050 - ..
073051 - 92. Kark J.D., Goldberger N., Kimura M., Sinnreich R.,
073052 - Aviv A. Energy intake and leukocyte telomere
073053 - length in young adults. Am. J. Clin. Nutr.
073054 - 2012;95:479?487. doi: 10.3945/ajcn.111.024521.
073055 - [PMC free article] [PubMed] [CrossRef]
073057 - ..
073058 - 93. Shalev I., Moffitt T.E., Sugden K., Williams B., Houts
073059 - R.M., Danese A., Mill J., Arseneault L., Caspi A.
073060 - Exposure to violence during childhood is associated
073061 - with telomere erosion from 5 to 10 years of age: A
073062 - longitudinal study. Mol. Psychiatry. 2013;18:576?581.
073063 - doi: 10.1038/mp.2012.32. [PMC free article] [PubMed]
073064 - [CrossRef]
073066 - ..
073067 - 94. Steenstrup T., Hjelmborg J.V., Mortensen L.H., Kimura
073068 - M., Christensen K., Aviv A. Leukocyte telomere dynamics
073069 - in the elderly. Eur. J. Epidemiol. 2013;28:181?187.
073070 - doi: 10.1007/s10654-013-9780-4. [PMC free article]
073071 - [PubMed] [CrossRef]
073073 - ..
073074 - 95. Weischer M., Bojesen S.E., Nordestgaard B.G. Telomere
073075 - shortening unrelated to smoking, body weight, physical
073076 - activity and alcohol intake: 4576 general population
073077 - individuals with repeat measurements 10 years apart.
073078 - PLoS Genet. 2014;10:e1004191 doi:
073079 - 10.1371/journal.pgen.1004191. [PMC free article]
073080 - [PubMed] [CrossRef]
073082 - ..
073083 - 96. Epel E.S., Merkin S.S., Cawthon R., Blackburn E.H.,
073084 - Adler N.E., Pletcher M.J., Seeman T.E. The rate of
073085 - leukocyte telomere shortening predicts mortality from
073086 - cardiovascular disease in elderly men. Aging.
073087 - 2009;1:81?88. doi: 10.18632/aging.100007. [PMC free
073088 - article] [PubMed] [CrossRef]
073090 - ..
073091 - 97. Svenson U., Nordfjäll K., Baird D., Roger L., Osterman
073092 - P., Hellenius M.-L., Roos G. Blood cell telomere length
073093 - is a dynamic feature. PLoS ONE. 2011;6:e21485 doi:
073094 - 10.1371/journal.pone.0021485. [PMC free article]
073095 - [PubMed] [CrossRef]
073097 - ..
073098 - 98. Epel E. How ?reversible? is telomeric aging? Cancer
073099 - Prev. Res. 2012;5:1163?1168. doi:
073100 - 10.1158/1940-6207.CAPR-12-0370. [PubMed] [CrossRef]
073102 - ..
073103 - 99. Minino A.M., Heron M.P., Murphy S.L., Kochanek K.D.
073104 - Deaths: Final data for 2004. Natl. Vital Stat. Rep.
073105 - 2007;55:1?119. [PubMed]
073107 - ..
073108 - 100. Halaschek-Wiener J., Vulto I., Fornika D., Collins J.,
073109 - Connors J.M., Le N.D., Lansdorp P.M., Brooks-Wilson A.
073110 - Reduced telomere length variation in healthy oldest
073111 - old. Mech. Ageing Dev. 2008;129:638?641. doi:
073112 - 10.1016/j.mad.2008.07.004. [PubMed] [CrossRef]
073114 - ..
073115 - 101. Martin-Ruiz C.M., Gussekloo J., van Heemst D., von
073116 - Zglinicki T., Westendorp R.G.J. Telomere length in
073117 - white blood cells is not associated with morbidity
073118 - or mortality in the oldest old: A population-based
073119 - study. Aging Cell. 2005;4:287?290. doi:
073120 - 10.1111/j.1474-9726.2005.00171.x. [PubMed] [CrossRef]
073122 - ..
073123 - 102. Simons M.J.P. Questioning causal involvement of
073124 - telomeres in aging. Ageing Res. Rev. 2015;24:191?196.
073125 - doi: 10.1016/j.arr.2015.08.002. [PubMed] [CrossRef]
073127 - ..
073128 - 103. Steenstrup T., Kark J.D., Verhulst S., Thinggaard M.,
073129 - Hjelmborg J.V.B., Dalgård C., Kyvik K.O., Christiansen
073130 - L., Mangino M., Spector T.D., et al. Telomeres and the
073131 - natural lifespan limit in humans.
073132 - Aging. 2017;9:1130?1140. doi:
073133 - 10.18632/aging.101216. [PMC free article] [PubMed] [CrossRef]
073135 - ..
073136 - 104. Der G., Batty G.D., Benzeval M., Deary I.J., Green M.J.,
073137 - McGlynn L., McIntyre A., Robertson T., Shiels P.G. Is
073138 - telomere length a biomarker for aging: Cross-sectional
073139 - evidence from the west of scotland? PLoS ONE.
073140 - 2012;7:e45166 doi: 10.1371/journal.pone.0045166. [PMC
073141 - free article] [PubMed] [CrossRef]
073143 - ..
073144 - 105. Mather K.A., Jorm A.F., Milburn P.J., Tan X., Easteal
073145 - S., Christensen H. No associations between telomere
073146 - length and age-sensitive indicators of physical
073147 - function in mid and later life. J. Gerontol. Ser.
073148 - A Biol. Sci. Med. Sci. 2010;65:792?799. doi:
073149 - 10.1093/gerona/glq050. [PubMed] [CrossRef]
073151 - ..
073152 - 106. Brouilette S.W., Moore J.S., McMahon A.D., Thompson
073153 - J.R., Ford I., Shepherd J., Packard C.J., Samani N.J.
073154 - Telomere length, risk of coronary heart disease and
073155 - statin treatment in the west of scotland primary
073156 - prevention study: A nested case-control study. Lancet.
073157 - 2007;369:107?114. doi:
073158 - 10.1016/S0140-6736(07)60071-3. [PubMed] [CrossRef]
073160 - ..
073161 - 107. Martin-Ruiz C., Jagger C., Kingston A., Collerton J.,
073162 - Catt M., Davies K., Dunn M., Hilkens C., Keavney B.,
073163 - Pearce S.H.S., et al. Assessment of a large panel of
073164 - candidate biomarkers of ageing in the newcastle 85+
073165 - study. Mech. Ageing Dev. 2011;132:496?502. doi:
073166 - 10.1016/j.mad.2011.08.001. [PubMed] [CrossRef]
073168 - ..
073169 - 108. Boonekamp J.J., Simons M.J.P., Hemerik L., Verhulst S.
073170 - Telomere length behaves as biomarker of somatic
073171 - redundancy rather than biological age. Aging Cell.
073172 - 2013;12:330?332. doi:
073173 - 10.1111/acel.12050. [PubMed] [CrossRef]
073175 - ..
073176 - 109. Armanios M., Blackburn E.H. The telomere syndromes.
073177 - Nat. Rev. Genet. 2012;13:693?704. doi:
073178 - 10.1038/nrg3246. [PMC free article] [PubMed] [CrossRef]
073180 - ..
073181 - 110. Wilson W.R.W., Herbert K.E., Mistry Y., Stevens S.E.,
073182 - Patel H.R., Hastings R.A., Thompson M.M., Williams B.
073183 - Blood leucocyte telomere DNA content predicts vascular
073184 - telomere DNA content in humans with and without
073185 - vascular disease. Eur. Heart J. 2008;29:2689?2694.
073186 - doi: 10.1093/eurheartj/ehn386. [PubMed] [CrossRef]
073187 -
073188 - 112. Gardner J.P., Kimura M., Chai W., Durrani J.F.,
073189 - Tchakmakjian L., Cao X., Lu X., Li G., Peppas A.P.,
073190 - Skurnick J., et al. Telomere dynamics in macaques and
073191 - humans. J. Gerontol. Ser. A. 2007;62:367?374. doi:
073192 - 10.1093/gerona/62.4.367. [PubMed] [CrossRef]
073194 - ..
073195 - 113. Dlouha D., Maluskova J., Kralova Lesna I., Lanska V.,
073196 - Hubacek J.A. Comparison of the relative telomere length
073197 - measured in leukocytes and eleven different human
073198 - tissues. Physiol. Res. 2014;63(Suppl.
073199 - S3):S343?S350. [PubMed]
073201 - ..
073202 - 114. Takubo K., Izumiyama-Shimomura N., Honma N., Sawabe M.,
073203 - Arai T., Kato M., Oshimura M., Nakamura K.-I. Telomere
073204 - lengths are characteristic in each human individual.
073205 - Exp. Gerontol. 2002;37:523?531. doi:
073206 - 10.1016/S0531-5565(01)00218-2. [PubMed] [CrossRef]
073208 - ..
073209 - 115. Lin J., Epel E., Cheon J., Kroenke C., Sinclair E.,
073210 - Bigos M., Wolkowitz O., Mellon S., Blackburn E.
073211 - Analyses and comparisons of telomerase activity
073212 - and telomere length in human T and B cells: Insights
073213 - for epidemiology of telomere maintenance. J. Immunol.
073214 - Methods. 2010;352:71?80. doi:
073215 - 10.1016/j.jim.2009.09.012. [PMC free article] [PubMed] [CrossRef]
073217 - ..
073218 - 116. Simpson R.J. The effects of exercise on blood leukocyte
073219 - numbers. In: Gleeson M., Bishop N., Walsh N., editors.
073220 - Exercise Immunology. Taylor and Francis; Hoboken, NJ,
073221 - USA: 2013. pp. 64?105.
073223 - ..
073224 - 117. Montpetit A.J., Alhareeri A.A., Montpetit M.,
073225 - Starkweather A.R., Elmore L.W., Filler K., Mohanraj L.,
073226 - Burton C.W., Menzies V.S., Lyon D.E., et al. Telomere
073227 - length: A review of methods for measurement. Nurs. Res.
073228 - 2014;63:289?299. doi:
073229 - 10.1097/NNR.0000000000000037. [PMC free
073230 - article] [PubMed] [CrossRef]
073232 - ..
073233 - 118. Elbers C.C., Garcia M.E., Kimura M., Cummings S.R.,
073234 - Nalls M.A., Newman A.B., Park V., Sanders J.L., Tranah
073235 - G.J., Tishkoff S.A., et al. Comparison between southern
073236 - blots and qPCR analysis of leukocyte telomere length in
073237 - the health ABC study. J. Gerontol. Ser. A.
073238 - 2014;69:527?531. doi:
073239 - 10.1093/gerona/glt121. [PMC free article] [PubMed] [CrossRef]
073241 - ..
073242 - 119. Rufer N., Dragowska W., Thornbury G., Roosnek E.,
073243 - Lansdorp P.M. Telomere length dynamics in human
073244 - lymphocyte subpopulations measured by flow cytometry.
073245 - Nat. Biotech. 1998;16:743?747. doi:
073246 - 10.1038/nbt0898-743. [PubMed] [CrossRef]
073248 - ..
073249 - 120. Parker M., Chen X., Bahrami A., Dalton J., Rusch M.,
073250 - Wu G., Easton J., Cheung N.-K., Dyer M., Mardis E.R.,
073251 - et al. Assessing telomeric DNA content in pediatric
073252 - cancers using whole-genome sequencing data. Genome
073253 - Biol. 2012;13:R113. doi:
073254 - 10.1186/gb-2012-13-12-r113. [PMC free
073255 - article] [PubMed] [CrossRef]
073257 - ..
073258 - 121. Treangen T.J., Salzberg S.L. Repetitive DNA and
073259 - next-generation sequencing: Computational challenges
073260 - and solutions. Nat. Rev. Genet. 2011;13:36?46. doi:
073261 - 10.1038/nrg3117. [PMC free article] [PubMed]
073262 - [CrossRef]
073264 - ..
073265 - 122. Nersisyan L., Arakelyan A. Computel: Computation
073266 - of mean telomere length from whole-genome
073267 - next-generation sequencing data. PLoS ONE.
073268 - 2015;10:e0125201 doi: 10.1371/journal.pone.0125201.
073269 - [PMC free article] [PubMed] [CrossRef]
073271 - ..
073272 - 123. Raschenberger J., Lamina C., Haun M., Kollerits
073273 - B., Coassin S., Boes E., Kedenko L., Köttgen A.,
073274 - Kronenberg F. Influence of DNA extraction methods on
073275 - relative telomere length measurements and its impact
073276 - on epidemiological studies. Sci. Rep. 2016;6:25398.
073277 - doi: 10.1038/srep25398. [PMC free article] [PubMed]
073278 - [CrossRef]
073280 - ..
073281 - 124. Skvortsov D.A., Zvereva M.E., Shpanchenko O.V.,
073282 - Dontsova O.A. Assays for detection of telomerase
073283 - activity. Acta Nat. 2011;3:48?68. [PMC free article]
073284 - [PubMed]
073286 - ..
073287 - 125. Aviv A., Valdes A.M., Spector T.D. Human telomere
073288 - biology: Pitfalls of moving from the laboratory to
073289 - epidemiology. Int. J. Epidemiol. 2006;35:1424?1429.
073290 - doi: 10.1093/ije/dyl169. [PubMed] [CrossRef]
073292 - ..
073293 - 126. Calado R.T., Young N.S. Telomere diseases. N.
073294 - Engl. J. Med. 2009;361:2353?2365. doi:
073295 - 10.1056/NEJMra0903373. [PMC free article] [PubMed]
073296 - [CrossRef]
073298 - ..
073299 - 127. Prowse K.R., Greider C.W. Developmental and
073300 - tissue-specific regulation of mouse telomerase and
073301 - telomere length. Proc. Natl. Acad. Sci. USA.
073302 - 1995;92:4818?4822. doi: 10.1073/pnas.92.11.4818. [PMC
073303 - free article] [PubMed] [CrossRef]
073305 - ..
073306 - 128. Kim N.W., Piatyszek M.A., Prowse K.R., Harley
073307 - C.B., West M.D., Ho P.L., Coviello G.M., Wright W.E.,
073308 - Weinrich S.L., Shay J.W. Specific association of human
073309 - telomerase activity with immortal cells and cancer.
073310 - Science. 1994;266:2011?2015. doi:
073311 - 10.1126/science.7605428. [PubMed] [CrossRef]
073313 - ..
073314 - 129. Blasco M.A., Lee H.-W., Hande M.P., Samper E.,
073315 - Lansdorp P.M., DePinho R.A., Greider C.W. Telomere
073316 - shortening and tumor formation by mouse cells lacking
073317 - telomerase rna. Cell. 1997;91:25?34. doi:
073318 - 10.1016/S0092-8674(01)80006-4. [PubMed] [CrossRef]
073320 - ..
073321 - 130. Lee H.-W., Blasco M.A., Gottlieb G.J., Horner J.W.,
073322 - Greider C.W., DePinho R.A. Essential role of mouse
073323 - telomerase in highly proliferative organs. Nature.
073324 - 1998;392:569?574. [PubMed]
073326 - ..
073327 - 131. Ferrón S., Mira H., Franco S., Cano-Jaimez M., Bellmunt
073328 - E., Ramírez C., Fariñas I., Blasco M.A. Telomere
073329 - shortening and chromosomal instability abrogates
073330 - proliferation of adult but not embryonic neural stem
073331 - cells. Development. 2004;131:4059?4070. doi:
073332 - 10.1242/dev.01215. [PubMed] [CrossRef]
073334 - ..
073335 - 132. Franco S., Segura I., Riese H., Blasco M. Telomere
073336 - length is a key molecular determinant of angiogenic
073337 - potential in vivo: Implications for cancer and aging.
073338 - Cancer Res. 2002;62:552?559. [PubMed] Hemann M.T.,
073339 - Rudolph K.L., Strong M.A., DePinho R.A., Chin L.,
073340 - Greider C.W. Telomere dysfunction triggers
073341 - developmentally regulated germ cell apoptosis. Mol.
073342 - Biol. Cell. 2001;12:2023?2030. doi:
073343 - 10.1091/mbc.12.7.2023. [PMC free article] [PubMed]
073344 - [CrossRef]
073346 - ..
073347 - 133. Hemann M.T., Rudolph K.L., Strong M.A., DePinho R.A.,
073348 - Chin L., Greider C.W. Telomere dysfunction triggers
073349 - developmentally regulated germ cell apoptosis. Mol.
073350 - Biol. Cell. 2001;12:2023?2030. doi:
073351 - 10.1091/mbc.12.7.2023. [PMC free
073352 - article] [PubMed] [CrossRef]
073354 - ..
073355 - 134. Herrera E., Samper E., Martín-Caballero J., Flores
073356 - J.M., Lee H.W., Blasco M.A. Disease states associated
073357 - with telomerase deficiency appear earlier in mice with
073358 - short telomeres. EMBO J. 1999;18:2950?2960. doi:
073359 - 10.1093/emboj/18.11.2950. [PMC free
073360 - article] [PubMed] [CrossRef]
073362 - ..
073363 - 135. Herrera E., Samper E., Blasco M.A. Telomere shortening
073364 - in mTR?/? embryos is associated with failure to close
073365 - the neural tube. EMBO J. 1999;18:1172?1181. doi:
073366 - 10.1093/emboj/18.5.1172. [PMC free
073367 - article] [PubMed] [CrossRef]
073369 - ..
073370 - 136. Herrera E., Martínez-A C., Blasco M.A. Impaired germinal
073371 - center reaction in mice with short telomeres. EMBO J.
073372 - 2000;19:472?481. doi: 10.1093/emboj/19.3.472. [PMC free
073373 - article] [PubMed] [CrossRef]
073375 - ..
073376 - 137. Leri A., Franco S., Zacheo A., Barlucchi L., Chimenti
073377 - S., Limana F., Nadal-Ginard B., Kajstura J.,
073378 - Anversa P., Blasco M.A. Ablation of telomerase and
073379 - telomere loss leads to cardiac dilatation and heart
073380 - failure associated with p53 upregulation. EMBO J.
073381 - 2003;22:131?139. doi: 10.1093/emboj/cdg013. [PMC free
073382 - article] [PubMed] [CrossRef]
073384 - ..
073385 - 138. Rudolph K.L., Chang S., Lee H.-W., Blasco M.,
073386 - Gottlieb G.J., Greider C., DePinho R.A. Longevity,
073387 - stress response and cancer in aging
073388 - telomerase-deficient mice. Cell. 1999;96:701?712. doi:
073389 - 10.1016/S0092-8674(00)80580-2. [PubMed] [CrossRef]
073391 - ..
073392 - 139. Samper E., Fernández P., Eguia R., Martin-Rivera L.,
073393 - Bernad A., Blasco M.A., Aracil M. Long-term
073394 - repopulating ability of telomerase-deficient murine
073395 - hematopoietic stem cells. Blood. 2002;99:2767?2775.
073396 - doi: 10.1182/blood.V99.8.2767. [PubMed] [CrossRef]
073398 - ..
073399 - 140. Samper E., Flores J.M., Blasco M.A. Restoration of
073400 - telomerase activity rescues chromosomal instability
073401 - and premature aging in Terc?/? mice with short
073402 - telomeres. EMBO Rep. 2001;2:800?807. doi:
073403 - 10.1093/embo-reports/kve174. [PMC free
073404 - article] [PubMed] [CrossRef]
073406 - ..
073407 - 141. Calado R.T., Dumitriu B. Telomere dynamics in mice and
073408 - humans. Semin. Hematol. 2013;50:165?174. doi:
073409 - 10.1053/j.seminhematol.2013.03.030. [PMC free
073410 - article] [PubMed] [CrossRef]
073412 - ..
073413 - 142. Kishi S., Uchiyama J., Baughman A.M., Goto T.,
073414 - Lin M.C., Tsai S.B. The zebrafish as a vertebrate
073415 - model of functional aging and very gradual senescence.
073416 - Exp. Gerontol. 2003;38:777?786. doi:
073417 - 10.1016/S0531-5565(03)00108-6. [PubMed] [CrossRef]
073419 - ..
073420 - 143. Pierce A.J., Johnson R.D., Thompson L.H., Jasin M.
073421 - XRCC3 promotes homology-directed repair of DNA damage
073422 - in mammalian cells. Genes Dev. 1999;13:2633?2638. doi:
073423 - 10.1101/gad.13.20.2633. [PMC free
073424 - article] [PubMed] [CrossRef]
073426 - ..
073427 - 144. Lau B.W.-M., Wong A.O.-L., Tsao G.S.-W., So K.-F.,
073428 - Yip H.K.-F. Molecular cloning and characterization of
073429 - the zebrafish (Danio rerio) telomerase catalytic
073430 - subunit (telomerase reverse transcriptase, TERT) J.
073431 - Mol. Neurosci. 2008;34:63?75. doi:
073432 - 10.1007/s12031-007-0072-x. [PubMed] [CrossRef]
073434 - ..
073435 - 145. Henriques C.M., Carneiro M.C., Tenente I.M.,
073436 - Jacinto A., Ferreira M.G. Telomerase is required for
073437 - zebrafish lifespan. PLoS Genet. 2013;9:e1003214 doi:
073438 - 10.1371/journal.pgen.1003214. [PMC free
073439 - article] [PubMed] [CrossRef]
073440 -
073441 - 147. Steinert S., White D.M., Zou Y., Shay J.W., Wright W.E.
073442 - Telomere biology and cellular aging in nonhuman primate
073443 - cells. Exp. Cell Res. 2002;272:146?152. doi:
073444 - 10.1006/excr.2001.5409. [PubMed] [CrossRef]
073446 - ..
073447 - 148. Fitzgerald M.S., Riha K., Gao F., Ren S.,
073448 - McKnight T.D., Shippen D.E. Disruption of the
073449 - telomerase catalytic subunit gene from arabidopsis
073450 - inactivates telomerase and leads to a slow loss of
073451 - telomeric DNA. Proc. Natl. Acad. Sci. USA.
073452 - 1999;96:14813?14818. doi:
073453 - 10.1073/pnas.96.26.14813. [PMC free
073454 - article] [PubMed] [CrossRef]
073456 - ..
073457 - 149. Riha K., McKnight T.D., Griffing L.R., Shippen D.E.
073458 - Living with genome instability: Plant responses to
073459 - telomere dysfunction. Science. 2001;291:1797?1800.
073460 - doi: 10.1126/science.1057110. [PubMed] [CrossRef]
073462 - ..
073463 - 150. Meier B., Clejan I., Liu Y., Lowden M., Gartner A.,
073464 - Hodgkin J., Ahmed S. Trt-1 is the caenorhabditis
073465 - elegans catalytic subunit of telomerase. PLoS Genet.
073466 - 2006;2:e18 doi: 10.1371/journal.pgen.0020018. [PMC
073467 - free article] [PubMed] [CrossRef]
073469 - ..
073470 - 151. Raices M., Maruyama H., Dillin A., Karlseder J.
073471 - Uncoupling of longevity and telomere length in c.
073472 - Elegans. PLoS Genet. 2005;1:e30 [PMC free article]
073473 - [PubMed]
073475 - ..
073476 - 152. Walter M.F., Biessmann M.R., Benitez C., Török
073477 - T., Mason J.M., Biessmann H. Effects of telomere
073478 - length in drosophila melanogaster on life span,
073479 - fecundity and fertility. Chromosoma. 2007;116:41?51.
073480 - doi: 10.1007/s00412-006-0081-5. [PMC free article]
073481 - [PubMed] [CrossRef]
073483 - ..
073484 - 153. Fitzpatrick A.L., Kronmal R.A., Gardner J.P.,
073485 - Psaty B.M., Jenny N.S., Tracy R.P., Walston J., Kimura
073486 - M., Aviv A. Leukocyte telomere length and
073487 - cardiovascular disease in the cardiovascular health
073488 - study. Am. J. Epidemiol. 2007;165:14?21. doi:
073489 - 10.1093/aje/kwj346. [PubMed] [CrossRef]
073491 - ..
073492 - 154. Huzen J., de Boer R.A., van Veldhuisen D.J., van
073493 - Gilst W.H., van der Harst P. The emerging role of
073494 - telomere biology in cardiovascular disease. Front.
073495 - Biosci. 2010;15:35?45. doi: 10.2741/3604. [PubMed]
073496 - [CrossRef]
073498 - ..
073499 - 155. Willeit P., Willeit J., Mayr A., Weger S.,
073500 - Oberhollenzer F., Brandstätter A., Kronenberg F.,
073501 - Kiechl S. Telomere length and risk of incident cancer
073502 - and cancer mortality. JAMA. 2010;304:69?75. doi:
073503 - 10.1001/jama.2010.897. [PubMed] [CrossRef]
073505 - ..
073506 - 156. Zhang W., Chen Y., Wang Y., Liu P., Zhang M.,
073507 - Zhang C., Hu F.B., Hui R. Short telomere length in
073508 - blood leucocytes contributes to the presence of
073509 - atherothrombotic stroke and haemorrhagic stroke and
073510 - risk of post-stroke death. Clin. Sci. 2013;125:27?43.
073511 - doi: 10.1042/CS20120691. [PubMed] [CrossRef]
073513 - ..
073514 - 157. Salpea K.D., Talmud P.J., Cooper J.A., Maubaret
073515 - C.G., Stephens J.W., Abelak K., Humphries S.E.
073516 - Association of telomere length with type 2 diabetes,
073517 - oxidative stress and UCP2 gene variation.
073518 - Atherosclerosis. 2010;209:42?50. doi:
073519 - 10.1016/j.atherosclerosis.2009.09.070. [PMC free
073520 - article] [PubMed] [CrossRef]
073521 - 158. Sampson M.J., Winterbone M.S., Hughes J.C., Dozio
073522 - N., Hughes D.A. Monocyte telomere shortening and
073523 - oxidative DNA damage in type 2 diabetes. Diabetes
073524 - Care. 2006;29:283?289. doi:
073525 - 10.2337/diacare.29.02.06.dc05-1715. [PubMed]
073526 - [CrossRef]
073528 - ..
073529 - 159. Zee R.Y.L., Castonguay A.J., Barton N.S., Germer
073530 - S., Martin M. Mean leukocyte telomere length
073531 - shortening and type 2 diabetes mellitus: A
073532 - case-control study. Transl. Res. 2010;155:166?169.
073533 - doi: 10.1016/j.trsl.2009.09.012. [PubMed] [CrossRef]
073535 - ..
073536 - 160. Honig L.S., Kang M., Schupf N., Lee J.H., Mayeux R.
073537 - Association of shorter leukocyte telomere repeat length
073538 - with dementia and mortality. Arch. Neurol.
073539 - 2012;69:1332?1339. doi:
073540 - 10.1001/archneurol.2012.1541. [PMC free
073541 - article] [PubMed] [CrossRef]
073543 - ..
073544 - 161. Jenkins E.C., Velinov M.T., Ye L., Gu H., Li S.,
073545 - Jenkins E.C., Brooks S.S., Pang D., Devenny D.A.,
073546 - Zigman W.B., et al. Telomere shortening in T
073547 - lymphocytes of older individuals with down syndrome
073548 - and dementia. Neurobiol. Aging. 2006;27:941?945.
073549 - doi: 10.1016/j.neurobiolaging.2005.05.021.
073550 - [PubMed] [CrossRef]
073552 - ..
073553 - 162. Martin-Ruiz C., Dickinson H.O., Keys B., Rowan E.,
073554 - Kenny R.A., von Zglinicki T. Telomere length predicts
073555 - poststroke mortality, dementia and cognitive decline.
073556 - Ann. Neurol. 2006;60:174?180. doi: 10.1002/ana.20869.
073557 - [PubMed] [CrossRef]
073559 - ..
073560 - 163. Rode L., Bojesen S.E., Weischer M., Vestbo J.,
073561 - Nordestgaard B.G. Short telomere length, lung function
073562 - and chronic obstructive pulmonary disease in 46,396
073563 - individuals. Thorax. 2013;68:429?435. doi:
073564 - 10.1136/thoraxjnl-2012-202544. [PubMed] [CrossRef]
073566 - ..
073567 - 164. Buckingham E.M., Klingelhutz A.J. The role of telomeres
073568 - in the ageing of human skin. Exp. Dermatol.
073569 - 2011;20:297?302. doi: 10.1111/j.1600-0625.2010.01242.x.
073570 - [PMC free article] [PubMed] [CrossRef]
073572 - ..
073573 - 165. Samani N.J., Boultby R., Butler R., Thompson J.R.,
073574 - Goodall A.H. Telomere shortening in atherosclerosis.
073575 - Lancet. 2001;358:472?473. doi:
073576 - 10.1016/S0140-6736(01)05633-1. [PubMed] [CrossRef]
073578 - ..
073579 - 166. Brouilette S., Singh R.K., Thompson J.R., Goodall A.H.,
073580 - Samani N.J. White cell telomere length and risk of
073581 - premature myocardial infarction. Arterioscler. Thromb.
073582 - Vasc. Biol. 2003;23:842?846. doi:
073583 - 10.1161/01.ATV.0000067426.96344.32. [PubMed] [CrossRef]
073585 - ..
073586 - 167. Brouilette S.W., Whittaker A., Stevens S.E., van der
073587 - Harst P., Goodall A.H., Samani N.J. Telomere length is
073588 - shorter in healthy offspring of subjects with coronary
073589 - artery disease: Support for the telomere hypothesis.
073590 - Heart. 2008;94:422?425. doi: 10.1136/hrt.2007.139675.
073591 - [PubMed] [CrossRef]
073593 - ..
073594 - 168. Carty C.L., Kooperberg C., Liu J., Herndon M., Assimes
073595 - T., Hou L., Kroenke C.H., LaCroix A.Z., Kimura M., Aviv
073596 - A., et al. Leukocyte telomere length and risks of
073597 - incident coronary heart disease and mortality in a
073598 - racially diverse population of postmenopausal women.
073599 - Arterioscler. Thromb. Vasc. Biol. 2015;35:2225?2231.
073600 - doi: 10.1161/ATVBAHA.115.305838. [PMC free article]
073601 - [PubMed] [CrossRef]
073603 - ..
073604 - 169. D?Mello M.J.J., Ross S.A., Briel M., Anand S.S.,
073605 - Gerstein H., Paré G. Association between shortened
073606 - leukocyte telomere length and cardiometabolic outcomes:
073607 - Systematic review and meta-analysis. Circ. Cardiovasc.
073608 - Genet. 2015;8:82?90. doi:
073609 - 10.1161/CIRCGENETICS.113.000485. [PubMed] [CrossRef]
073611 - ..
073612 - 170. Ellehoj H., Bendix L., Osler M. Leucocyte telomere
073613 - length and risk of cardiovascular disease in a cohort
073614 - of 1397 danish men and women. Cardiology.
073615 - 2016;133:173?177. doi: 10.1159/000441819. [PubMed]
073616 - [CrossRef]
073618 - ..
073619 - 171. Haycock P.C., Heydon E.E., Kaptoge S., Butterworth
073620 - A.S., Thompson A., Willeit P. Leucocyte telomere length
073621 - and risk of cardiovascular disease: Systematic review
073622 - and meta-analysis. BMJ. 2014;349:g4227. doi:
073623 - 10.1136/bmj.g4227. [PMC free article] [PubMed]
073624 - [CrossRef]
073626 - ..
073627 - 172. Matthews C., Gorenne I., Scott S., Figg N., Kirkpatrick
073628 - P., Ritchie A., Goddard M., Bennett M. Vascular smooth
073629 - muscle cells undergo telomere-based senescence in human
073630 - atherosclerosis: Effects of telomerase and oxidative
073631 - stress. Circ. Res. 2006;99:156?164. doi:
073632 - 10.1161/01.RES.0000233315.38086.bc. [PubMed] [CrossRef]
073634 - ..
073635 - 173. Willeit P., Willeit J., Brandstätter A., Ehrlenbach S.,
073636 - Mayr A., Gasperi A., Weger S., Oberhollenzer F., Reindl
073637 - M., Kronenberg F., et al. Cellular aging reflected by
073638 - leukocyte telomere length predicts advanced
073639 - atherosclerosis and cardiovascular disease risk.
073640 - Arterioscler. Thromb. Vasc. Biol. 2010;30:1649?1656.
073641 - doi: 10.1161/ATVBAHA.110.205492. [PubMed] [CrossRef]
073643 - ..
073644 - 174. Toupance S., Labat C., Temmar M., Rossignol P., Kimura
073645 - M., Aviv A., Benetos A. Short telomeres but not
073646 - telomere attrition rates, are associated with carotid
073647 - atherosclerosis. Hypertension. 2017;70:420?425. doi:
073648 - 10.1161/HYPERTENSIONAHA.117.09354. [PMC free article]
073649 - [PubMed] [CrossRef]
073651 - ..
073652 - 175. Strandberg T.E., Saijonmaa O., Tilvis R.S., Pitkälä
073653 - K.H., Strandberg A.Y., Salomaa V., Miettinen T.A.,
073654 - Fyhrquist F. Telomere length in old age and cholesterol
073655 - across the life course. J. Am. Geriatr. Soc.
073656 - 2011;59:1979?1981. doi:
073657 - 10.1111/j.1532-5415.2011.03610_13.x. [PubMed]
073658 - [CrossRef]
073660 - ..
073661 - 176. Benetos A., Okuda K., Lajemi M., Kimura M., Thomas F.,
073662 - Skurnick J., Labat C., Bean K., Aviv A. Telomere length
073663 - as an indicator of biological aging: The gender effect
073664 - and relation with pulse pressure and pulse wave
073665 - velocity. Hypertension. 2001;37:381?385. doi:
073666 - 10.1161/01.HYP.37.2.381. [PubMed] [CrossRef]
073668 - ..
073669 - 177. Müezzinler A., Zaineddin A.K., Brenner H. Body mass
073670 - index and leukocyte telomere length in adults: A
073671 - systematic review and meta-analysis. Obes. Rev.
073672 - 2014;15:192?201. doi: 10.1111/obr.12126. [PubMed]
073673 - [CrossRef]
073675 - ..
073676 - 178. Strandberg T.E., Strandberg A.Y., Saijonmaa O., Tilvis
073677 - R.S., Pitkälä K.H., Fyhrquist F. Association between
073678 - alcohol consumption in healthy midlife and telomere
073679 - length in older men. The helsinki businessmen study.
073680 - Eur. J. Epidemiol. 2012;27:815?822. doi:
073681 - 10.1007/s10654-012-9728-0. [PubMed] [CrossRef]
073683 - ..
073684 - 179. Cherkas L.F., Aviv A., Valdes A.M., Hunkin J.L.,
073685 - Gardner J.P., Surdulescu G.L., Kimura M., Spector T.D.
073686 - The effects of social status on biological aging as
073687 - measured by white-blood-cell telomere length. Aging
073688 - Cell. 2006;5:361?365. doi:
073689 - 10.1111/j.1474-9726.2006.00222.x. [PubMed] [CrossRef]
073691 - ..
073692 - 180. Bischoff C., Petersen H.C., Graakjaer J.,
073693 - Andersen-Ranberg K., Vaupel J.W., Bohr V.A., Kolvraa
073694 - S., Christensen K. No association between telomere
073695 - length and survival among the elderly and oldest old.
073696 - Epidemiology. 2006;17:190?194. doi:
073697 - 10.1097/01.ede.0000199436.55248.10. [PubMed] [CrossRef]
073699 - ..
073700 - 181. Neuner B., Lenfers A., Kelsch R., Jäger K., Brüggmann
073701 - N., van der Harst P., Walter M. Telomere length is not
073702 - related to established cardiovascular risk factors but
073703 - does correlate with red and white blood cell counts in
073704 - a german blood donor population. PLoS ONE.
073705 - 2015;10:e0139308 doi: 10.1371/journal.pone.0139308.
073706 - [PMC free article] [PubMed] [CrossRef]
073708 - ..
073709 - 182. De Meyer T., Rietzschel E.R., de Buyzere M.L.,
073710 - Langlois M.R., de Bacquer D., Segers P., van Damme P.,
073711 - de Backer G.G., van Oostveldt P., van Criekinge W., et
073712 - al. Systemic telomere length and preclinical
073713 - atherosclerosis: The asklepios study. Eur. Heart J.
073714 - 2009;30:3074?3081. doi: 10.1093/eurheartj/ehp324.
073715 - [PubMed] [CrossRef]
073717 - ..
073718 - 183. Fernández-Alvira J.M., Fuster V., Dorado B.,
073719 - Soberón N., Flores I., Gallardo M., Pocock S., Blasco
073720 - M.A., Andrés V. Short telomere load, telomere length
073721 - and subclinical atherosclerosis: The pesa study. J.
073722 - Am. Coll. Cardiol. 2016;67:2467?2476. doi:
073723 - 10.1016/j.jacc.2016.03.530. [PubMed] [CrossRef]
073725 - ..
073726 - 184. Osthus I.B.Ø., Lydersen S., Dalen H., Nauman J.,
073727 - Wisløff U. Association of telomere length with
073728 - myocardial infarction: A prospective cohort from the
073729 - population based HUNT 2 study. Prog. Cardiovasc. Dis.
073730 - 2017;59:649?655. doi: 10.1016/j.pcad.2017.04.001.
073731 - [PubMed] [CrossRef]
073733 - ..
073734 - 185. Codd V., Nelson C.P., Albrecht E., Mangino M., Deelen
073735 - J., Buxton J.L., Hottenga J.J., Fischer K., Esko T.,
073736 - Surakka I., et al. Identification of seven loci
073737 - affecting mean telomere length and their association
073738 - with disease. Nat. Genet. 2013;45 doi: 10.1038/ng.2528.
073739 - [PMC free article] [PubMed] [CrossRef]
073741 - ..
073742 - 186. Haycock P.C. Association between telomere length and
073743 - risk of cancer and non-neoplastic diseases: A mendelian
073744 - randomization study. JAMA Oncol. 2017;3:636?651. [PMC
073745 - free article] [PubMed]
073747 - ..
073748 - 187. Madrid A.S., Rode L., Nordestgaard B.G., Bojesen S.E.
073749 - Short telomere length and ischemic heart disease:
073750 - Observational and genetic studies in 290,022
073751 - individuals. Clin. Chem. 2016;62:1140?1149. doi:
073752 - 10.1373/clinchem.2016.258566. [PubMed] [CrossRef]
073754 - ..
073755 - 188. Strazhesko I.D., Tkacheva O.N., Akasheva D.U.,
073756 - Dudinskaya E.N., Plokhova E.V., Pykhtina V.S.,
073757 - Kruglikova A.S., Kokshagina N.V., Sharashkina N.V.,
073758 - Agaltsov M.V., et al. Atorvastatin therapy modulates
073759 - telomerase activity in patients free of atherosclerotic
073760 - cardiovascular diseases. Front. Pharmacol. 2016;7:347.
073761 - doi: 10.3389/fphar.2016.00347. [PMC free article]
073762 - [PubMed] [CrossRef]
073764 - ..
073765 - 189. Bode-Böger S.M., Martens-Lobenhoffer J., Täger M.,
073766 - Schröder H., Scalera F. Aspirin reduces endothelial
073767 - cell senescence. Biochem. Biophys. Res. Commun.
073768 - 2005;334:1226?1232. doi: 10.1016/j.bbrc.2005.07.014.
073769 - [PubMed] [CrossRef]
073771 - ..
073772 - 190. Li F., Guo Y.I., Jiang X.I.N., Zhong J., Li G., Sun S.
073773 - Aspirin inhibits human telomerase activation in
073774 - unstable carotid plaques. Exp. Ther. Med.
073775 - 2013;6:204?208. doi: 10.3892/etm.2013.1082. [PMC free
073776 - article] [PubMed] [CrossRef]
073778 - ..
073779 - 191. Donnini S., Terzuoli E., Ziche M., Morbidelli L.
073780 - Sulfhydryl angiotensin-converting enzyme inhibitor
073781 - promotes endothelial cell survival through nitric-oxide
073782 - synthase, fibroblast growth factor-2 and telomerase
073783 - cross-talk. J. Pharmacol. Exp. Ther. 2010;332:776?784.
073784 - [PubMed]
073786 - ..
073787 - 192. Townsley D.M., Dumitriu B., Liu D., Biancotto A.,
073788 - Weinstein B., Chen C., Hardy N., Mihalek A.D., Lingala
073789 - S., Kim Y.J., et al. Danazol treatment for telomere
073790 - diseases. N. Engl. J. Med. 2016;374:1922?1931. doi:
073791 - 10.1056/NEJMoa1515319. [PMC free article] [PubMed]
073792 - [CrossRef]
073794 - ..
073795 - 193. Artandi S.E., DePinho R.A. Telomeres and telomerase in
073796 - cancer. Carcinogenesis. 2010;31:9?18. doi:
073797 - 10.1093/carcin/bgp268. [PMC free article] [PubMed]
073798 - [CrossRef]
073800 - ..
073801 - 194. Anic G.M., Sondak V.K., Messina J.L., Fenske N.A.,
073802 - Zager J.S., Cherpelis B.S., Lee J.-H., Fulp W.J.,
073803 - Epling-Burnette P.K., Park J.Y., et al. Telomere length
073804 - and risk of melanoma, squamous cell carcinoma and basal
073805 - cell carcinoma. Cancer Epidemiol. 2013;37:434?439. doi:
073806 - 10.1016/j.canep.2013.02.010. [PMC free article]
073807 - [PubMed] [CrossRef]
073809 - ..
073810 - 195. Iles M.M., Bishop D.T., Taylor J.C., Hayward N.K.,
073811 - Brossard M., Cust A.E., Dunning A.M., Lee J.E., Moses
073812 - E.K., Akslen L.A., et al. The effect on melanoma risk
073813 - of genes previously associated with telomere length.
073814 - J. Natl. Cancer Inst. 2014;106:dju267. doi:
073815 - 10.1093/jnci/dju267. [PMC free article] [PubMed]
073816 - [CrossRef]
073818 - ..
073819 - 196. Julin B., Shui I., Heaphy C.M., Joshu C.E., Meeker
073820 - A.K., Giovannucci E., De Vivo I., Platz E.A.
073821 - Circulating leukocyte telomere length and risk of
073822 - overall and aggressive prostate cancer. Br. J. Cancer.
073823 - 2015;112:769?776. doi: 10.1038/bjc.2014.640. [PMC free
073824 - article] [PubMed] [CrossRef]
073826 - ..
073827 - 197. Lynch S.M., Major J.M., Cawthon R., Weinstein
073828 - S.J., Virtamo J., Lan Q., Rothman N., Albanes D.,
073829 - Stolzenberg-Solomon R.Z. A prospective analysis of
073830 - telomere length and pancreatic cancer in the
073831 - alpha-tocopherol beta-carotene cancer (ATBC)
073832 - prevention study. Int. J. Cancer. 2013;133:2672?2680.
073833 - doi: 10.1002/ijc.28272. [PMC free article] [PubMed]
073834 - [CrossRef]
073836 - ..
073837 - 198. Machiela M.J., Hsiung C.A., Shu X.-O., Seow W.J.,
073838 - Wang Z., Matsuo K., Hong Y.-C., Seow A., Wu C.,
073839 - Hosgood H.D., et al. Genetic variants associated with
073840 - longer telomere length are associated with increased
073841 - lung cancer risk among never-smoking women in asia: A
073842 - report from the female lung cancer consortium in asia.
073843 - Int. J. Cancer. 2015;137:311?319. doi:
073844 - 10.1002/ijc.29393. [PMC free article] [PubMed]
073845 - [CrossRef]
073847 - ..
073848 - 199. Nan H., Du M., de Vivo I., Manson J.E., Liu S.,
073849 - McTiernan A., Curb J.D., Lessin L.S., Bonner M.R., Guo
073850 - Q., et al. Shorter telomeres associate with a reduced
073851 - risk of melanoma development. Cancer Res.
073852 - 2011;71:6758?6763. doi: 10.1158/0008-5472.CAN-11-1988.
073853 - [PMC free article] [PubMed] [CrossRef]
073855 - ..
073856 - 200. Pellatt A.J., Wolff R.K., Torres-Mejia G., John
073857 - E.M., Herrick J.S., Lundgreen A., Baumgartner K.B.,
073858 - Giuliano A.R., Hines L.M., Fejerman L., et al.
073859 - Telomere length, telomere-related genes and breast
073860 - cancer risk: The breast cancer health disparities
073861 - study. Genes Chromosom. Cancer. 2013;52:595?609. doi:
073862 - 10.1002/gcc.22056. [PMC free article] [PubMed]
073863 - [CrossRef]
073865 - ..
073866 - 201. Qu S., Wen W., Shu X.-O., Chow W.-H., Xiang
073867 - Y.-B., Wu J., Ji B.-T., Rothman N., Yang G., Cai Q.,
073868 - et al. Association of leukocyte telomere length with
073869 - breast cancer risk: Nested case-control findings from
073870 - the shanghai women?s health study. Am. J. Epidemiol.
073871 - 2013;177:617?624. doi: 10.1093/aje/kws291. [PMC free
073872 - article] [PubMed] [CrossRef]
073874 - ..
073875 - 202. Sanchez-Espiridion B., Chen M., Chang J.Y., Lu
073876 - C., Chang D.W., Roth J.A., Wu X., Gu J. Telomere
073877 - length in peripheral blood leukocytes and lung cancer
073878 - risk: A large case?control study in caucasians. Cancer
073879 - Res. 2014;74:2476?2486. doi:
073880 - 10.1158/0008-5472.CAN-13-2968. [PMC free article]
073881 - [PubMed] [CrossRef]
073883 - ..
073884 - 203. Seow W.J., Cawthon R.M., Purdue M.P., Hu W., Gao
073885 - Y.-T., Huang W.-Y., Weinstein S.J., Ji B.-T., Virtamo
073886 - J., Hosgood H.D., et al. Telomere length in white
073887 - blood cell DNA and lung cancer: A pooled analysis of
073888 - three prospective cohorts. Cancer Res.
073889 - 2014;74:4090?4098. doi: 10.1158/0008-5472.CAN-14-0459.
073890 - [PMC free article] [PubMed] [CrossRef]
073892 - ..
073893 - 204. Shay J.W., Bacchetti S. A survey of telomerase
073894 - activity in human cancer. Eur. J. Cancer.
073895 - 1997;33:787?791. doi: 10.1016/S0959-8049(97)00062-2.
073896 - [PubMed] [CrossRef]
073898 - ..
073899 - 205. Novak K.D. Telomeres and telomerases in cancer.
073900 - Medscape Gen. Med. 2003;5:21. [PubMed]
073902 - ..
073903 - 206. Williams G.C. Pleiotropy, natural selection and
073904 - the evolution of senescence. Evolution.
073905 - 1957;11:398?411. doi:
073906 - 10.1111/j.1558-5646.1957.tb02911.x. [CrossRef]
073908 - ..
073909 - 207. Wang S., Chen Y., Qu F., He S., Huang X., Jiang H.,
073910 - Jin T., Wan S., Xing J. Association between leukocyte
073911 - telomere length and glioma risk: A case-control study.
073912 - Neuro-Oncol. 2014;16:505?512. doi:
073913 - 10.1093/neuonc/not240. [PMC free
073914 - article] [PubMed] [CrossRef]
073916 - ..
073917 - 208. Wu X., Amos C.I., Zhu Y., Zhao H., Grossman B.H.,
073918 - Shay J.W., Luo S., Hong W.K., Spitz M.R. Telomere
073919 - dysfunction: A potential cancer predisposition
073920 - factor. J. Natl. Cancer Inst. 2003;95:1211?1218.
073921 - doi: 10.1093/jnci/djg011. [PubMed] [CrossRef]
073923 - ..
073924 - 209. Cesare A.J., Reddel R.R. Alternative lengthening of
073925 - telomeres: Models, mechanisms and implications. Nat.
073926 - Rev. Genet. 2010;11:319?330. doi: 10.1038/nrg2763.
073927 - [PubMed] [CrossRef]
073929 - ..
073930 - 210. Yang T.-L.B., Song S., Johnson F.B. Handbook of the
073931 - Biology of Aging. 8th ed. Academic Press; San Diego,
073932 - CA, USA: 2016. Chapter 7?Contributions of telomere
073933 - biology to human age-related disease; pp. 205?239.
073935 - ..
073936 - 211. Cawthon R.M., Smith K.R., O?Brien E., Sivatchenko A.,
073937 - Kerber R.A. Association between telomere length in
073938 - blood and mortality in people aged 60 years or older.
073939 - Lancet. 2003;361:393?395. doi:
073940 - 10.1016/S0140-6736(03)12384-7. [PubMed] [CrossRef]
073942 - ..
073943 - 212. Deelen J., Beekman M., Codd V., Trompet S., Broer L.,
073944 - Hägg S., Fischer K., Thijssen P.E., Suchiman H.E.D.,
073945 - Postmus I., et al. Leukocyte telomere length associates
073946 - with prospective mortality independent of
073947 - immune-related parameters and known genetic markers.
073948 - Int. J. Epidemiol. 2014;3:878?886. doi:
073949 - 10.1093/ije/dyt267. [PMC free article] [PubMed]
073950 - [CrossRef]
073952 - ..
073953 - 214. Soerensen M., Thinggaard M., Nygaard M., Dato S., Tan
073954 - Q., Hjelmborg J., Andersen-Ranberg K., Stevnsner T.,
073955 - Bohr V.A., Kimura M., et al. Genetic variation in tert
073956 - and terc and human leukocyte telomere length and
073957 - longevity: A cross-sectional and longitudinal analysis.
073958 - Aging Cell. 2012;11:223?227. doi:
073959 - 10.1111/j.1474-9726.2011.00775.x. [PMC free article]
073960 - [PubMed] [CrossRef]
073962 - ..
073963 - 215. Njajou O.T., Hsueh W.-C., Blackburn E.H., Newman A.B.,
073964 - Wu S.-H., Li R., Simonsick E.M., Harris T.M., Cummings
073965 - S.R., Cawthon R.M., et al. Association between telomere
073966 - length, specific causes of death and years of healthy
073967 - life in health, aging and body composition, a
073968 - population-based cohort study. J. Gerontol. Ser. A
073969 - Biol. Sci. Med. Sci. 2009;64:860?864. doi:
073970 - 10.1093/gerona/glp061. [PMC free article] [PubMed]
073971 - [CrossRef]
073973 - ..
073974 - 216. Svensson J., Karlsson M.K., Ljunggren Ö., Tivesten Å.,
073975 - Mellström D., Movérare-Skrtic S. Leukocyte telomere
073976 - length is not associated with mortality in older men.
073977 - Exp. Gerontol. 2014;57:6?12. doi:
073978 - 10.1016/j.exger.2014.04.013. [PubMed] [CrossRef]
073980 - ..
073981 - 217. Gardner M., Bann D., Wiley L., Cooper R., Hardy R.,
073982 - Nitsch D., Martin-Ruiz C., Shiels P., Sayer A.A.,
073983 - Barbieri M., et al. Gender and telomere length:
073984 - Systematic review and meta-analysis. Exp. Gerontol.
073985 - 2014;51:15?27. doi: 10.1016/j.exger.2013.12.004. [PMC
073986 - free article] [PubMed] [CrossRef]
073988 - ..
073989 - 218. Christensen K., Thinggaard M., McGue M., Rexbye H.,
073990 - Hjelmborg J.V., Aviv A., Gunn D., van der Ouderaa F.,
073991 - Vaupel J.W. Perceived age as clinically useful
073992 - biomarker of ageing: Cohort study. BMJ. 2009;339:b5262.
073993 - doi: 10.1136/bmj.b5262. [PMC free article] [PubMed]
073994 - [CrossRef]
073996 - ..
073997 - 219. Astrup A.S., Tarnow L., Jorsal A., Lajer M.,
073998 - Nzietchueng R., Benetos A., Rossing P., Parving H.-H.
073999 - Telomere length predicts all-cause mortality in
074000 - patients with type 1 diabetes. Diabetologia.
074001 - 2009;53:45?48. doi: 10.1007/s00125-009-1542-1. [PubMed]
074002 - [CrossRef]
074004 - ..
074005 - 220. Bakaysa S.L., Mucci L.A., Slagboom P.E., Boomsma D.I.,
074006 - McClearn G.E., Johansson B., Pedersen N.L. Telomere
074007 - length predicts survival independent of genetic
074008 - influences. Aging Cell. 2007;6:769?774. doi:
074009 - 10.1111/j.1474-9726.2007.00340.x. [PubMed] [CrossRef]
074011 - ..
074012 - 222. Glei D.A., Goldman N., Weinstein M., Risques R.A.
074013 - Shorter ends, faster end? Leukocyte telomere length and
074014 - mortality among older taiwanese. J. Gerontol. Ser. A
074015 - Biol. Sci. Med. Sci. 2014;70:1490?1498. doi:
074016 - 10.1093/gerona/glu191. [PMC free article] [PubMed]
074017 - [CrossRef]
074019 - ..
074020 - 223. Kim J.H., Ko J.H., Lee D.C., Lim I., Bang H. Habitual
074021 - physical exercise has beneficial effects on telomere
074022 - length in postmenopausal women. Menopause.
074023 - 2012;19:1109?1115. doi: 10.1097/gme.0b013e3182503e97.
074024 - [PubMed] [CrossRef]
074026 - ..
074027 - 224. Lee J., Sandford A.J., Connett J.E., Yan J., Mui T., Li
074028 - Y., Daley D., Anthonisen N.R., Brooks-Wilson A., Man
074029 - S.F.P., et al. The relationship between telomere length
074030 - and mortality in chronic obstructive pulmonary disease
074031 - (COPD) PLoS ONE. 2012;7:e35567 doi:
074032 - 10.1371/journal.pone.0035567. [PMC free article]
074033 - [PubMed] [CrossRef]
074035 - ..
074036 - 226. Strandberg T.E., Saijonmaa O., Tilvis R.S., Pitkälä
074037 - K.H., Strandberg A.Y., Miettinen T.A., Fyhrquist F.
074038 - Association of telomere length in older men with
074039 - mortality and midlife body mass index and smoking. J.
074040 - Gerontol. Ser. A Biol. Sci. Med. Sci. 2011;66:815?820.
074041 - doi: 10.1093/gerona/glr064. [PubMed] [CrossRef]
074043 - ..
074044 - 227. Weischer M., Bojesen S.E., Cawthon R.M., Freiberg J.J.,
074045 - Tybjærg-Hansen A., Nordestgaard B.G. Short telomere
074046 - length, myocardial infarction, ischemic heart disease
074047 - and early death. Arterioscler. Thromb. Vasc. Biol.
074048 - 2012;32:822?829. doi: 10.1161/ATVBAHA.111.237271.
074049 - [PubMed] [CrossRef]
074051 - ..
074052 - 229. Bendix L., Thinggaard M., Fenger M., Kolvraa S., Avlund
074053 - K., Linneberg A., Osler M. Longitudinal changes in
074054 - leukocyte telomere length and mortality in humans. J.
074055 - Gerontol. Ser. A. 2014;69:231?239. doi:
074056 - 10.1093/gerona/glt153. [PubMed] [CrossRef]
074058 - ..
074059 - 230. Kimura M., Hjelmborg J.V., Gardner J.P., Bathum L.,
074060 - Brimacombe M., Lu X., Christiansen L., Vaupel J.W.,
074061 - Aviv A., Christensen K. Telomere length and mortality:
074062 - A study of leukocytes in elderly danish twins. Am. J.
074063 - Epidemiol. 2008;167:799?806. doi: 10.1093/aje/kwm380.
074064 - [PMC free article] [PubMed] [CrossRef]
074066 - ..
074067 - 231. Glei D.A., Goldman N., Risques R.A., Rehkopf
074068 - D.H., Dow W.H., Rosero-Bixby L., Weinstein M.
074069 - Predicting survival from telomere length versus
074070 - conventional predictors: A multinational
074071 - population-based cohort study. PLoS ONE.
074072 - 2016;11:e0152486 doi: 10.1371/journal.pone.0152486.
074073 - [PMC free article] [PubMed] [CrossRef]
074075 - ..
074076 - 232. Heidinger B.J., Blount J.D., Boner W., Griffiths
074077 - K., Metcalfe N.B., Monaghan P. Telomere length in
074078 - early life predicts lifespan. Proc. Natl. Acad. Sci.
074079 - USA. 2012;109:1743?1748. doi: 10.1073/pnas.1113306109.
074080 - [PMC free article] [PubMed] [CrossRef]
074082 - ..
074083 - 233. Bendix L., Gade M.M., Staun P.W., Kimura M.,
074084 - Jeune B., Hjelmborg J.V., Aviv A., Christensen K.
074085 - Leukocyte telomere length and physical ability among
074086 - danish twins age 70+ Mech. Ageing Dev.
074087 - 2011;132:568?572. doi: 10.1016/j.mad.2011.10.003. [PMC
074088 - free article] [PubMed] [CrossRef]
074090 - ..
074091 - 234. Denham J., Nelson C.P., O?Brien B.J., Nankervis
074092 - S.A., Denniff M., Harvey J.T., Marques F.Z., Codd V.,
074093 - Zukowska-Szczechowska E., Samani N.J. Longer leukocyte
074094 - telomeres are associated with ultra-endurance exercise
074095 - independent of cardiovascular risk factors. PLoS ONE.
074096 - 2013;8:e69377 doi: 10.1371/journal.pone.0069377. [PMC
074097 - free article] [PubMed] [CrossRef]
074099 - ..
074100 - 235. Du M., Prescott J., Kraft P., Han J., Giovannucci
074101 - E., Hankinson S.E., De Vivo I. Physical activity,
074102 - sedentary behavior and leukocyte telomere length in
074103 - women. Am. J. Epidemiol. 2012;175:414?422. doi:
074104 - 10.1093/aje/kwr330. [PMC free article] [PubMed]
074105 - [CrossRef]
074107 - ..
074108 - 236. Garland S.N., Johnson B., Palmer C., Speck R.M.,
074109 - Donelson M., Xie S.X., DeMichele A., Mao J.J. Physical
074110 - activity and telomere length in early stage breast
074111 - cancer survivors. Breast Cancer Res. 2014;16:1?9. doi:
074112 - 10.1186/s13058-014-0413-y. [PMC free article] [PubMed]
074113 - [CrossRef]
074115 - ..
074116 - 237. Kingma E.M., de Jonge P., van der Harst P., Ormel
074117 - J., Rosmalen J.G.M. The association between
074118 - intelligence and telomere length: A longitudinal
074119 - population based study. PLoS ONE. 2012;7:e49356 doi:
074120 - 10.1371/journal.pone.0049356. [PMC free article]
074121 - [PubMed] [CrossRef]
074123 - ..
074124 - 238. Krauss J., Farzaneh-Far R., Puterman E., Na B.,
074125 - Lin J., Epel E., Blackburn E., Whooley M.A. Physical
074126 - fitness and telomere length in patients with coronary
074127 - heart disease: Findings from the heart and soul study.
074128 - PLoS ONE. 2011;6:e26983 doi:
074129 - 10.1371/journal.pone.0026983. [PMC free article]
074130 - [PubMed] [CrossRef]
074132 - ..
074133 - 239. LaRocca T.J., Seals D.R., Pierce G.L. Leukocyte
074134 - telomere length is preserved with aging in endurance
074135 - exercise-trained adults and related to maximal aerobic
074136 - capacity. Mech. Ageing Dev. 2010;131:165?167. doi:
074137 - 10.1016/j.mad.2009.12.009. [PMC free article] [PubMed]
074138 - [CrossRef]
074140 - ..
074141 - 240. Loprinzi P.D. Cardiorespiratory capacity and
074142 - leukocyte telomere length among adults in the united
074143 - states. Am. J. Epidemiol. 2015;182:198?201. doi:
074144 - 10.1093/aje/kwv056. [PubMed] [CrossRef]
074146 - ..
074147 - 241. Ludlow A.T., Zimmerman J.B., Witkowski S., Hearn
074148 - J.W., Hatfield B.D., Roth S.M. Relationship between
074149 - physical activity level, telomere length and
074150 - telomerase activity. Med. Sci. Sports Exerc.
074151 - 2008;40:1764?1771. doi: 10.1249/MSS.0b013e31817c92aa.
074152 - [PMC free article] [PubMed] [CrossRef]
074154 - ..
074155 - 242. Osthus I.B.Ø., Sgura A., Berardinelli F., Alsnes
074156 - I.V., Brønstad E., Rehn T., Støbakk P.K., Hatle H.,
074157 - Wisløff U., Nauman J. Telomere length and long-term
074158 - endurance exercise: Does exercise training affect
074159 - biological age? A pilot study. PLoS ONE. 2012;7:e52769
074160 - doi: 10.1371/journal.pone.0052769. [PMC free article]
074161 - [PubMed] [CrossRef]
074163 - ..
074164 - 243. Puterman E., Lin J., Krauss J., Blackburn E.H.,
074165 - Epel E.S. Determinants of telomere attrition over 1
074166 - year in healthy older women: Stress and health
074167 - behaviors matter. Mol. Psychiatry. 2015;20:529?535.
074168 - doi: 10.1038/mp.2014.70. [PMC free article] [PubMed]
074169 - [CrossRef]
074171 - ..
074172 - 244. Savela S., Saijonmaa O., Strandberg T.E., Koistinen P.,
074173 - Strandberg A.Y., Tilvis R.S., Pitkälä K.H., Miettinen
074174 - T.A., Fyhrquist F. Physical activity in midlife and
074175 - telomere length measured in old age. Exp. Gerontol.
074176 - 2012;48:81?84. doi: 10.1016/j.exger.2012.02.003.
074177 - [PubMed] [CrossRef]
074179 - ..
074180 - 245. Silva L.C.R., de Araújo A.L., Fernandes J.R., Matias
074181 - M.S., Silva P.R., Duarte A.J.S., Garcez Leme L.E.,
074182 - Benard G. Moderate and intense exercise lifestyles
074183 - attenuate the effects of aging on telomere length and
074184 - the survival and composition of T cell subpopulations.
074185 - AGE. 2016;38:1?16. doi: 10.1007/s11357-016-9879-0. [PMC
074186 - free article] [PubMed] [CrossRef]
074188 - ..
074189 - 246. Venturelli M., Morgan G.R., Donato A.J., Reese V.,
074190 - Bottura R., Tarperi C., Milanese C., Schena F.,
074191 - Reggiani C., Naro F., et al. Cellular aging of skeletal
074192 - muscle: Telomeric and free radical evidence that
074193 - physical inactivity is responsible and not age. Clin.
074194 - Sci. 2014;127:415?421. doi: 10.1042/CS20140051. [PMC
074195 - free article] [PubMed] [CrossRef]
074197 - ..
074198 - 247. Werner C., Furster T., Widmann T., Poss J., Roggia C.,
074199 - Hanhoun M., Scharhag J., Buchner N., Meyer T.,
074200 - Kindermann W., et al. Physical exercise prevents
074201 - cellular senescence in circulating leukocytes and in
074202 - the vessel wall. Circulation. 2009;120:2438?2447. doi:
074203 - 10.1161/CIRCULATIONAHA.109.861005. [PubMed] [CrossRef]
074205 - ..
074206 - 248. Zhu H., Wang X., Gutin B., Davis C.L., Keeton D.,
074207 - Thomas J., Stallmann-Jorgensen I., Mooken G., Bundy V.,
074208 - Snieder H., et al. Leukocyte telomere length in healthy
074209 - caucasian and african-american adolescents:
074210 - Relationships with race, sex, adiposity, adipokines and
074211 - physical activity. J. Pediatr. 2011;158:215?220. doi:
074212 - 10.1016/j.jpeds.2010.08.007. [PMC free article]
074213 - [PubMed] [CrossRef]
074215 - ..
074216 - 249. Loprinzi P.D., Sng E. Mode-specific physical activity
074217 - and leukocyte telomere length among U.S. Adults:
074218 - Implications of running on cellular aging. Prev. Med.
074219 - 2016;85:17?19. doi: 10.1016/j.ypmed.2016.01.002.
074220 - [PubMed] [CrossRef]
074222 - ..
074223 - 250. Mathur S., Ardestani A., Parker B., Cappizzi J., Polk
074224 - D., Thompson P.D. Telomere length and cardiorespiratory
074225 - fitness in marathon runners. J. Investig. Med.
074226 - 2013;61:613?615. doi: 10.2310/JIM.0b013e3182814cc2.
074227 - [PubMed] [CrossRef]
074229 - ..
074230 - 251. Rae D.E., Vignaud A., Butler-Browne G.S., Thornell
074231 - L.E., Sinclair-Smith C., Derman E.W., Lambert M.I.,
074232 - Collins M. Skeletal muscle telomere length in healthy,
074233 - experienced, endurance runners. Eur. J. Appl. Physiol.
074234 - 2010;109:323?330. doi: 10.1007/s00421-010-1353-6.
074235 - [PubMed] [CrossRef]
074237 - ..
074238 - 252. Mason C., Risques R.-A., Xiao L., Duggan C.R., Imayama
074239 - I., Campbell K.L., Kong A., Foster-Schubert K.E., Wang
074240 - C.Y., Alfano C.M., et al. Independent and combined
074241 - effects of dietary weight loss and exercise on
074242 - leukocyte telomere length in postmenopausal women.
074243 - Obesity. 2013;21:E549?E554. doi: 10.1002/oby.20509.
074244 - [PMC free article] [PubMed] [CrossRef]
074246 - ..
074247 - 253. Cassidy A., De Vivo I., Liu Y., Han J., Prescott J.,
074248 - Hunter D.J., Rimm E.B. Associations between diet,
074249 - lifestyle factors and telomere length in women. Am. J.
074250 - Clin. Nutr. 2010;91:1273?1280. doi:
074251 - 10.3945/ajcn.2009.28947. [PMC free article] [PubMed]
074252 - [CrossRef]
074254 - ..
074255 - 254. Denham J., O?Brien B.J., Prestes P.R., Brown N.J.,
074256 - Charchar F.J. Increased expression of
074257 - telomere-regulating genes in endurance athletes with
074258 - long leukocyte telomeres. J. Appl. Physiol.
074259 - 2016;120:148?158. doi: 10.1152/japplphysiol.00587.2015.
074260 - [PubMed] [CrossRef]
074262 - ..
074263 - 255. Fujishiro K., Diez-Roux A.V., Landsbergis P.A., Jenny
074264 - N.S., Seeman T. Current employment status, occupational
074265 - category, occupational hazard exposure and job stress
074266 - in relation to telomere length: The multiethnic study
074267 - of atherosclerosis (MESA) Occup. Environ. Med.
074268 - 2013;70:552?560. doi: 10.1136/oemed-2012-101296. [PMC
074269 - free article] [PubMed] [CrossRef]
074271 - ..
074272 - 256. Garcia-Calzon S., Gea A., Razquin C., Corella D.,
074273 - Lamuela-Raventos R.M., Martinez J.A., Martinez-Gonzalez
074274 - M.A., Zalba G., Marti A. Longitudinal association of
074275 - telomere length and obesity indices in an intervention
074276 - study with a mediterranean diet: The predimed-navarra
074277 - trial. Int. J. Obes. (2005) 2014;38:177?182. doi:
074278 - 10.1038/ijo.2013.68. [PubMed] [CrossRef]
074280 - ..
074281 - 257. Hovatta I., de Mello V.D.F., Kananen L., Lindström J.,
074282 - Eriksson J.G., Ilanne-Parikka P., Keinänen-Kiukaanniemi
074283 - S., Peltonen M., Tuomilehto J., Uusitupa M. Leukocyte
074284 - telomere length in the finnish diabetes prevention
074285 - study. PLoS ONE. 2012;7:e34948 doi:
074286 - 10.1371/journal.pone.0034948. [PMC free article]
074287 - [PubMed] [CrossRef]
074289 - ..
074290 - 258. Kadi F., Ponsot E., Piehl-Aulin K., Mackey A., Kjaer
074291 - M., Oskarsson E., Holm L. The effects of regular
074292 - strength training on telomere length in human skeletal
074293 - muscle. Med. Sci. Sports Exerc. 2008;40:82?87. doi:
074294 - 10.1249/mss.0b013e3181596695. [PubMed] [CrossRef]
074296 - ..
074297 - 259. Laine M.K., Eriksson J.G., Kujala U.M., Raj R., Kaprio
074298 - J., Bäckmand H.M., Peltonen M., Sarna S. Effect of
074299 - intensive exercise in early adult life on telomere
074300 - length in later life in men. J. Sports Sci. Med.
074301 - 2015;14:239?245. [PMC free article] [PubMed]
074303 - ..
074304 - 260. Laye M.J., Solomon T.P.J., Karstoft K., Pedersen K.K.,
074305 - Nielsen S.D., Pedersen B.K. Increased shelterin mrna
074306 - expression in peripheral blood mononuclear cells and
074307 - skeletal muscle following an ultra-long-distance
074308 - running event. J. Appl. Physiol. 2012;112:773?781. doi:
074309 - 10.1152/japplphysiol.00997.2011. [PubMed] [CrossRef]
074311 - ..
074312 - 261. Ponsot E., Lexell J., Kadi F. Skeletal muscle telomere
074313 - length is not impaired in healthy physically active old
074314 - women and men. Muscle Nerve. 2008;37:467?472. doi:
074315 - 10.1002/mus.20964. [PubMed] [CrossRef]
074317 - ..
074318 - 262. Shin Y.A., Lee J.H., Song W., Jun T.W. Exercise
074319 - training improves the antioxidant enzyme activity with
074320 - no changes of telomere length. Mech. Ageing Dev.
074321 - 2008;129:254?260. doi: 10.1016/j.mad.2008.01.001.
074322 - [PubMed] [CrossRef]
074324 - ..
074325 - 263. Song Z., von Figura G., Liu Y., Kraus J.M., Torrice C.,
074326 - Dillon P., Rudolph-Watabe M., Ju Z., Kestler H.A.,
074327 - Sanoff H., et al. Lifestyle impacts on the
074328 - aging-associated expression of biomarkers of DNA damage
074329 - and telomere dysfunction in human blood. Aging Cell.
074330 - 2010;9:607?615. doi: 10.1111/j.1474-9726.2010.00583.x.
074331 - [PMC free article] [PubMed] [CrossRef]
074333 - ..
074334 - 264. Sun Q., Shi L., Prescott J., Chiuve S.E., Hu F.B., De
074335 - Vivo I., Stampfer M.J., Franks P.W., Manson J.E.,
074336 - Rexrode K.M. Healthy lifestyle and leukocyte telomere
074337 - length in U.S. Women. PLoS ONE. 2012;7:e38374 doi:
074338 - 10.1371/journal.pone.0038374. [PMC free article]
074339 - [PubMed] [CrossRef]
074341 - ..
074342 - 265. Tiainen A.M.K., Männistö S., Blomstedt P.A.,
074343 - Moltchanova E., Perälä M.M., Kaartinen N.E., Kajantie
074344 - E., Kananen L., Hovatta I., Eriksson J.G. Leukocyte
074345 - telomere length and its relation to food and nutrient
074346 - intake in an elderly population. Eur. J. Clin. Nutr.
074347 - 2012;66:1290?1294. doi: 10.1038/ejcn.2012.143. [PubMed]
074348 - [CrossRef]
074350 - ..
074351 - 266. Woo J., Tang N., Leung J. No association between
074352 - physical activity and telomere length in an elderly
074353 - chinese population 65 years and older. Arch. Intern.
074354 - Med. 2008;168:2163?2164. [PubMed]
074356 - ..
074357 - 267. Mundstock E., Zatti H., Louzada F.M., Oliveira S.G.,
074358 - Guma F.T.C.R., Paris M.M., Rueda A.B., Machado D.G.,
074359 - Stein R.T., Jones M.H., et al. Effects of physical
074360 - activity in telomere length: Systematic review and
074361 - meta-analysis. Ageing Res. Rev. 2015;22:72?80. doi:
074362 - 10.1016/j.arr.2015.02.004. [PubMed] [CrossRef]
074364 - ..
074365 - 268. Borghini A., Giardini G., Tonacci A., Mastorci F.,
074366 - Mercuri A., Mrakic-Sposta S., Moretti S., Andreassi
074367 - M.G., Pratali L. Chronic and acute effects of endurance
074368 - training on telomere length. Mutagenesis.
074369 - 2015;30:711?716. doi: 10.1093/mutage/gev038. [PubMed]
074370 - [CrossRef]
074372 - ..
074373 - 269. Latifovic L., Peacock S.D., Massey T.E., King W.D. The
074374 - influence of alcohol consumption, cigarette smoking,
074375 - and physical activity on leukocyte telomere length.
074376 - Cancer Epidemiol. Biomarkers Prev. 2016;25:374?380.
074377 - doi: 10.1158/1055-9965.EPI-14-1364. [PubMed] [CrossRef]
074379 - ..
074380 - 270. Saßenroth D., Meyer A., Salewsky B., Kroh M., Norman
074381 - K., Steinhagen-Thiessen E., Demuth I. Sports and
074382 - exercise at different ages and leukocyte telomere
074383 - length in later life?Data from the berlin aging study
074384 - ii (base-ii) PLoS ONE. 2015;10:e0142131 doi:
074385 - 10.1371/journal.pone.0142131. [PMC free article]
074386 - [PubMed] [CrossRef]
074388 - ..
074389 - 271. Shadyab A.H., LaMonte M.J., Kooperberg C., Reiner
074390 - A.P., Carty C.L., Manini T.M., Hou L., Di C., Macera
074391 - C.A., Gallo L.C., et al. Leisure-time physical
074392 - activity and leukocyte telomere length among older
074393 - women. Exp. Gerontol. 2017;95:141?147. doi:
074394 - 10.1016/j.exger.2017.05.019. [PMC free article]
074395 - [PubMed] [CrossRef]
074397 - ..
074398 - 272. Soares-Miranda L., Imamura F., Siscovick D.,
074399 - Jenny N.S., Fitzpatrick A.L., Mozaffarian D. Physical
074400 - activity, physical fitness and leukocyte telomere
074401 - length: The cardiovascular health study. Med. Sci.
074402 - Sports Exerc. 2015;47:2525?2534. doi:
074403 - 10.1249/MSS.0000000000000720. [PMC free article]
074404 - [PubMed] [CrossRef]
074406 - ..
074407 - 273. Mirabello L., Huang W.Y., Wong J.Y.Y., Chatterjee
074408 - N., Reding D., Crawford E.D., De Vivo I., Hayes R.B.,
074409 - Savage S.A. The association between leukocyte telomere
074410 - length and cigarette smoking, dietary and physical
074411 - variables, and risk of prostate cancer. Aging Cell.
074412 - 2009;8:405?413. doi: 10.1111/j.1474-9726.2009.00485.x.
074413 - [PMC free article] [PubMed] [CrossRef]
074415 - ..
074416 - 274. Denham J. Lack of association between pbmc
074417 - telomere length and endurance exercise. J. Appl.
074418 - Biomed. 2016;15:9?13. doi: 10.1016/j.jab.2016.09.004.
074419 - [CrossRef]
074421 - ..
074422 - 275. Von Kanel R., Bruwer E.J., Hamer M., de Ridder
074423 - J.H., Malan L. Association between objectively
074424 - measured physical activity, chronic stress and
074425 - leukocyte telomere length. J. Sports Med. Phys. Fit.
074426 - 2017;57:1349?1358. [PubMed]
074428 - ..
074429 - 276. Zalli A., Carvalho L.A., Lin J., Hamer M.,
074430 - Erusalimsky J.D., Blackburn E.H., Steptoe A. Shorter
074431 - telomeres with high telomerase activity are associated
074432 - with raised allostatic load and impoverished
074433 - psychosocial resources. Proc. Natl. Acad. Sci. USA.
074434 - 2014;111:4519?4524. [PMC free article] [PubMed]
074436 - ..
074437 - 277. Iwama H., Ohyashiki K., Ohyashiki J.H., Hayashi S.,
074438 - Yahata N., Ando K., Toyama K., Hoshika A., Takasaki M.,
074439 - Mori M. Telomeric length and telomerase activity vary
074440 - with age in peripheral blood cells obtained from normal
074441 - individuals. Hum. Genet. 1998;102:397?402. [PubMed]
074443 - ..
074444 - 278. Ludlow A.T., Witkowski S., Marshall M.R., Wang J., Lima
074445 - L.C.J., Guth L.M., Spangenburg E.E., Roth S.M. Chronic
074446 - exercise modifies age-related telomere dynamics in a
074447 - tissue-specific fashion. J. Gerontol. Ser. A Biol.
074448 - Sci. Med. Sci. 2012;67:911?926. [PMC free article]
074449 - [PubMed]
074451 - ..
074452 - 279. Werner C., Hanhoun M., Widmann T., Kazakov A., Semenov
074453 - A., Poss J., Bauersachs J., Thum T., Pfreundschuh M.,
074454 - Muller P. Effects of physical exercise on myocardial
074455 - telomere-regulating proteins, survival pathways and
074456 - apoptosis. J. Am. Coll. Cardiol. 2008;52:470. [PubMed]
074458 - ..
074459 - 280. Wolf S.A., Melnik A., Kempermann G. Physical exercise
074460 - increases adult neurogenesis and telomerase activity
074461 - and improves behavioral deficits in a mouse model of
074462 - schizophrenia. Brain Behav. Immun. 2011;25:971?980.
074463 - [PubMed]
074465 - ..
074466 - 281. Ornish D., Lin J., Daubenmier J., Weidner G., Epel E.,
074467 - Kemp C., Magbanua M.J.M., Marlin R., Yglecias L.,
074468 - Carroll P.R. Increased telomerase activity and
074469 - comprehensive lifestyle changes: A pilot study. Lancet
074470 - Oncol. 2008;9:1048?1057. [PubMed]
074472 - ..
074473 - 282. Zietzer A., Buschmann E.E., Janke D., Li L., Brix M.,
074474 - Meyborg H., Stawowy P., Jungk C., Buschmann I.,
074475 - Hillmeister P. Acute physical exercise and long-term
074476 - individual shear rate therapy increase telomerase
074477 - activity in human peripheral blood mononuclear cells.
074478 - Acta Phys. 2016;220:251?262. [PubMed]
074480 - ..
074481 - 283. Chilton W.L., Marques F.Z., West J., Kannourakis G.,
074482 - Berzins S.P., O?Brien B.J., Charchar F.J. Acute
074483 - exercise leads to regulation of telomere-associated
074484 - genes and microrna expression in immune cells. PLoS
074485 - ONE. 2014;9:e92088 [PMC free article] [PubMed]
074487 - ..
074488 - 284. Britt-Compton B., Capper R., Rowson J., Baird D.M.
074489 - Short telomeres are preferentially elongated by
074490 - telomerase in human cells. FEBS Lett.
074491 - 2009;583:3076?3080. [PubMed]
074493 - ..
074494 - 285. Epel E.S., Lin J., Wilhelm F.H., Wolkowitz O.M.,
074495 - Cawthon R., Adler N.E., Dolbier C., Mendes W.B.,
074496 - Blackburn E.H. Cell aging in relation to stress arousal
074497 - and cardiovascular disease risk factors.
074498 - Psychoneuroendocrinology. 2006;31:277?287. [PubMed]
074500 - ..
074501 - 286. Kroenke C.H., Pletcher M.J., Lin J., Blackburn E.,
074502 - Adler N., Matthews K., Epel E. Telomerase, telomere
074503 - length and coronary artery calcium in black and white
074504 - men in the cardia study. Atherosclerosis.
074505 - 2012;220:506?512. [PubMed]
074507 - ..
074508 - 287. Haigis M.C., Yankner B.A. The aging stress response.
074509 - Mol. Cell. 2010;40:333?344. [PMC free article] [PubMed]
074511 - ..
074512 - 288. Andersen J.K. Oxidative stress in neurodegeneration:
074513 - Cause or consequence? Nat. Med. 2004;10:S18?S25.
074514 - [PubMed]
074516 - ..
074517 - 289. Shukla V., Mishra S.K., Pant H.C. Oxidative stress in
074518 - neurodegeneration. Adv. Pharmacol. Sci. 2011;2011 doi:
074519 - 10.1155/2011/572634. [PMC free article] [PubMed]
074520 - [CrossRef]
074522 - ..
074523 - 290. Paravicini T.M., Touyz R.M. Redox signaling in
074524 - hypertension. Cardiovasc. Res. 2006;71:247?258.
074525 - [PubMed]
074527 - ..
074528 - 291. Trachootham D., Alexandre J., Huang P. Targeting cancer
074529 - cells by ros-mediated mechanisms: A radical therapeutic
074530 - approach? Nat. Rev. Drug Discov. 2009;8:579?591.
074531 - [PubMed]
074533 - ..
074534 - 292. Hewitt G., Jurk D., Marques F., Correia-Melo C., Hardy
074535 - T., Gackowska A., Anderson R., Taschuk M., Mann J.,
074536 - Passos J. Telomeres are favoured targets of a
074537 - persistent DNA damage response in ageing and
074538 - stress-induced senescence. Nat. Commun. 2012;3 doi:
074539 - 10.1038/ncomms1708. [PMC free article] [PubMed]
074540 - [CrossRef]
074542 - ..
074543 - 293. Oikawa S., Kawanishi S. Site-specific DNA damage at ggg
074544 - sequence by oxidative stress may accelerate telomere
074545 - shortening. FEBS Lett. 1999;453:365?368. [PubMed]
074547 - ..
074548 - 294. Von Zglinicki T. Oxidative stress shortens telomeres.
074549 - Trends Biochem. Sci. 2002;27:339?344. [PubMed]
074551 - ..
074552 - 295. Houben J.M., Moonen H.J., van Schooten F.J., Hageman
074553 - G.J. Telomere length assessment: Biomarker of chronic
074554 - oxidative stress? Free Radic. Biol. Med.
074555 - 2008;44:235?246. [PubMed]
074557 - ..
074558 - 296. Woo J., Suen E., Tang N.L.S. Telomeres and the ageing
074559 - process. Rev. Clin. Gerontol. 2010:1?9. doi:
074560 - 10.1017/S0959259809990451. [CrossRef]
074562 - ..
074563 - 297. Ji L.L., Gomez-Cabrera M.-C., Vina J. Exercise and
074564 - hormesis: Activation of cellular antioxidant signaling
074565 - pathway. Ann. N. Y. Acad. Sci. 2006;1067:425?435.
074566 - [PubMed]
074568 - ..
074569 - 298. McArdle A., Jackson M.J. Exercise, oxidative stress and
074570 - ageing. J. Anat. 2000;197:539?541. [PMC free article]
074571 - [PubMed]
074573 - ..
074574 - 299. Mishra S., Kumar R., Malhotra N., Singh N., Dada R.
074575 - Mild oxidative stress is beneficial for sperm telomere
074576 - length maintenance. World J. Methodol. 2016;6:163?170.
074577 - [PMC free article] [PubMed]
074579 - ..
074580 - 300. Radak Z., Chung H.Y., Goto S. Exercise and hormesis:
074581 - Oxidative stress-related adaptation for successful
074582 - aging. Biogerontology. 2005;6:71?75. [PubMed]
074584 - ..
074585 - 301. Urso M.L., Clarkson P.M. Oxidative stress, exercise and
074586 - antioxidant supplementation. Toxicology.
074587 - 2003;189:41?54. [PubMed]
074589 - ..
074590 - 302. Radák Z., Apor P., Pucsok J., Berkes I., Ogonovszky H.,
074591 - Pavlik G., Nakamoto H., Goto S. Marathon running alters
074592 - the DNA base excision repair in human skeletal muscle.
074593 - Life Sci. 2003;72:1627?1633. [PubMed]
074595 - ..
074596 - 303. Richter T., von Zglinicki T. A continuous correlation
074597 - between oxidative stress and telomere shortening in
074598 - fibroblasts. Exp. Gerontol. 2007;42:1039?1042. [PubMed]
074600 - ..
074601 - 304. Von Zglinicki T., Pilger R., Sitte N. Accumulation of
074602 - single-strand breaks is the major cause of telomere
074603 - shortening in human fibroblasts. Free Radic. Biol.
074604 - Med. 2000;28:64?74. [PubMed]
074606 - ..
074607 - 305. Büchner N., Zschauer T.C., Lukosz M., Altschmied J.,
074608 - Haendeler J. Downregulation of mitochondrial telomerase
074609 - reverse transcriptase induced by H2O2 is src kinase
074610 - dependent. Exp. Gerontol. 2010;45:558?562. [PubMed]
074612 - ..
074613 - 306. Haendeler J., Dröse S., Büchner N., Jakob S.,
074614 - Altschmied J., Goy C., Spyridopoulos I., Zeiher A.M.,
074615 - Brandt U., Dimmeler S. Mitochondrial telomerase reverse
074616 - transcriptase binds to and protects mitochondrial DNA
074617 - and function from damage. Arterioscler. Thromb. Vasc.
074618 - Biol. 2009;29:929?935. [PubMed]
074620 - ..
074621 - 307. Khan S., Chuturgoon A.A., Naidoo D.P. Telomeres and
074622 - atherosclerosis: Review article. Cardiovasc. J. Afr.
074623 - 2012;23:563?571. [PMC free article] [PubMed]
074625 - ..
074626 - 308. O?Donovan A., Pantell M.S., Puterman E., Dhabhar F.S.,
074627 - Blackburn E.H., Yaffe K., Cawthon R.M., Opresko P.L.,
074628 - Hsueh W.-C., Satterfield S., et al. Cumulative
074629 - inflammatory load is associated with short leukocyte
074630 - telomere length in the health, aging and body
074631 - composition study. PLoS ONE. 2011;6:e19687 [PMC free
074632 - article] [PubMed]
074634 - ..
074635 - 309. Akiyama M., Yamada O., Hideshima T., Yanagisawa T.,
074636 - Yokoi K., Fujisawa K., Eto Y., Yamada H., Anderson K.C.
074637 - TNF? induces rapid activation and nuclear translocation
074638 - of telomerase in human lymphocytes. Biochem. Biophys.
074639 - Res. Commun. 2004;316:528?532. [PubMed]
074641 - ..
074642 - 310. Aviv A. Telomeres and human aging: Facts and fibs.
074643 - Sci. Aging Knowl. Environ. 2004;2004:pe43. [PubMed]
074645 - ..
074646 - 311. Jaiswal M., LaRusso N.F., Burgart L.J., Gores G.J.
074647 - Inflammatory cytokines induce DNA damage and inhibit
074648 - DNA repair in cholangiocarcinoma cells by a nitric
074649 - oxide-dependent mechanism. Cancer Res. 2000;60:184?190.
074650 - [PubMed]
074652 - ..
074653 - 312. Parish S.T., Wu J.E., Effros R.B. Modulation of t
074654 - lymphocyte replicative senescence via TNF-? inhibition:
074655 - Role of caspase-3. J. Immunol. 2009;182:4237?4243. [PMC
074656 - free article] [PubMed]
074658 - ..
074659 - 313. Xu D., Erickson M., Szeps A., Gruber O., Sangfelt S.,
074660 - Einhorn P.P., Grander D. Interferon alpha downregulates
074661 - telomerase reverse transcriptase and telomerase
074662 - activity in human malignant and nonmalignant
074663 - hematopoietic cells. Blood. 2000;96:4313?4318. [PubMed]
074665 - ..
074666 - 314. Coppé J.-P., Patil C., Rodier F., Sun Y., Muñoz D.,
074667 - Goldstein J., Nelson P., Desprez P.-Y., Campisi J.
074668 - Senescence-associated secretory phenotypes reveal
074669 - cell-nonautonomous functions of oncogenic RAS and the
074670 - p53 tumor suppressor. PLoS Biol. 2008;6:e301 [PMC free
074671 - article] [PubMed]
074673 - ..
074674 - 315. Rodier F., Coppe J.P., Patil C.K., Hoeijmakers W.A.,
074675 - Munoz D.P., Raza S.R., Freund A., Campeau E., Davalos
074676 - A.R., Campisi J. Persistent DNA damage signalling
074677 - triggers senescence-associated inflammatory cytokine
074678 - secretion. Nat. Cell Biol. 2009;11:1272. doi:
074679 - 10.1038/ncb1009-1272a. [PMC free article] [PubMed]
074680 - [CrossRef]
074682 - ..
074683 - 316. Beavers K.M., Brinkley T.E., Nicklas B.J. Effect of
074684 - exercise training on chronic inflammation. Clin. Chim.
074685 - Acta. 2010;411:785?793. [PMC free article] [PubMed]
074687 - ..
074688 - 317. Woods J.A., Vieira V.J., Keylock K.T. Exercise,
074689 - inflammation and innate immunity. Immunol. Allergy
074690 - Clin. N. Am. 2009;29:381?393. [PubMed]
074692 - ..
074693 - 318. Kendig E.L., Le H.H., Belcher S.M. Defining hormesis:
074694 - Evaluation of a complex concentration response
074695 - phenomenon. Int. J. Toxicol. 2010;29:235?246.
074696 - [PubMed]
074698 - ..
074699 - 319. Radak Z., Chung H.Y., Koltai E., Taylor A.W., Goto S.
074700 - Exercise, oxidative stress and hormesis. Hormesis.
074701 - 2008;7:34?42. [PubMed]
074703 - ..
074704 - 320. Ludlow A.T., Lima L.C., Wang J., Hanson E.D., Guth
074705 - L.M., Spangenburg E.E., Roth S.M. Exercise alters mrna
074706 - expression of telomere-repeat binding factor 1 in
074707 - skeletal muscle via p38 MAPK. J. Appl. Physiol.
074708 - 2012;113:1737?1746. [PMC free article] [PubMed]
074710 - ..
074711 - 321. Fraga M.F., Ballestar E., Villar-Garea A., Boix-Chornet
074712 - M., Espada J., Schotta G., Bonaldi T., Haydon C.,
074713 - Ropero S., Petrie K., et al. Loss of acetylation at
074714 - Lys16 and trimethylation at Lys20 of histone H4 is a
074715 - common hallmark of human cancer. Nat. Genet.
074716 - 2005;37:391?400. [PubMed]
074718 - ..
074719 - 322. Tommerup H., Dousmanis A., de Lange T. Unusual
074720 - chromatin in human telomeres. Mol. Cell. Biol.
074721 - 1994;14:5777?5785. [PMC free article] [PubMed]
074723 - ..
074724 - 323. Van Overveld P.G.M., Lemmers R.J.F.L., Sandkuijl L.A.,
074725 - Enthoven L., Winokur S.T., Bakels F., Padberg G.W., van
074726 - Ommen G.-J.B., Frants R.R., van der Maarel S.M.
074727 - Hypomethylation of D4Z4 in 4q-linked and non-4q-linked
074728 - facioscapulohumeral muscular dystrophy. Nat. Genet.
074729 - 2003;35:315?317. [PubMed]
074731 - ..
074732 - 324. Blasco M.A. The epigenetic regulation of mammalian
074733 - telomeres. Nat. Rev. Genet. 2007;8:299?309. [PubMed]
074735 - ..
074736 - 325. García-Cao M., O?Sullivan R., Peters A.H., Jenuwein T.,
074737 - Blasco M.A. Epigenetic regulation of telomere length in
074738 - mammalian cells by the Suv39h1 and Suv39h2 histone
074739 - methyltransferases. Nat. Genet. 2003;36:94?99. [PubMed]
074741 - ..
074742 - 326. Peuscher M.H., Jacobs J.J.L. Posttranslational control
074743 - of telomere maintenance and the telomere damage
074744 - response. Cell Cycle. 2012;11:1524?1534. [PubMed]
074746 - ..
074747 - 327. Walker J.R., Zhu X.-D. Post-translational modifications
074748 - of TRF1 and TRF2 and their roles in telomere
074749 - maintenance. Mech. Ageing Dev. 2012;133:421?434.
074750 - [PubMed]
074752 - ..
074753 - 328. Dinami R., Ercolani C., Petti E., Piazza S., Ciani Y.,
074754 - Sestito R., Sacconi A., Biagioni F., le Sage C., Agami
074755 - R., et al. Mir-155 drives telomere fragility in human
074756 - breast cancer by targeting TRF1. Cancer Res.
074757 - 2014;74:4145?4156. [PubMed]
074759 - ..
074760 - 329. Lytle J.R., Yario T.A., Steitz J.A. Target mrnas are
074761 - repressed as efficiently by microrna-binding sites in
074762 - the 5? UTR as in the 3? UTR. Proc. Natl. Acad. Sci.
074763 - USA. 2007;104:9667?9672. [PMC free article] [PubMed]
074765 - ..
074766 - 330. Chan S.Y., Zhang Y.Y., Hemann C., Mahoney C.E., Zweier
074767 - J.L., Loscalzo J. Microrna-210 controls mitochondrial
074768 - metabolism during hypoxia by repressing the iron-sulfur
074769 - cluster assembly proteins ISCU1/2. Cell Metab.
074770 - 2009;10:273?284. [PMC free article] [PubMed]
074772 - ..
074773 - 331. Davidson-Moncada J., Papavasiliou F.N., Tam W.
074774 - Micrornas of the immune system. Ann. N. Y. Acad. Sci.
074775 - 2010;1183:183?194. [PMC free article] [PubMed]
074777 - ..
074778 - 332. Davidsen P.K., Gallagher I.J., Hartman J.W.,
074779 - Tarnopolsky M.A., Dela F., Helge J.W., Timmons J.A.,
074780 - Phillips S.M. High responders to resistance exercise
074781 - training demonstrate differential regulation of
074782 - skeletal muscle microrna expression. J. Appl. Physiol.
074783 - 2011;110:309?317. [PubMed]
074785 - ..
074786 - 333. Williams A.H., Liu N., van Rooij E., Olson E.N.
074787 - Microrna control of muscle development and disease.
074788 - Curr. Opin. Cell Biol. 2009;21:461?469. [PMC free
074789 - article] [PubMed]
074791 - ..
074792 - 334. Zhang C. Micrornas in vascular biology and vascular
074793 - disease. J. Cardiovasc. Transl. Res. 2010;3:235?240.
074794 - [PMC free article] [PubMed]
074796 - ..
074797 - 335. Radom-Aizik S., Zaldivar F., Oliver S., Galassetti P.,
074798 - Cooper D.M. Evidence for microRNA involvement in
074799 - exercise-associated neutrophil gene expression changes.
074800 - J. Appl. Physiol. 2010;109:252?261. [PMC free article]
074801 - [PubMed]
074803 - ..
074804 - 336. Radom-Aizik S., Zaldivar F., Jr., Leu S.Y., Adams G.R.,
074805 - Oliver S., Cooper D.M. Effects of exercise on microRNA
074806 - expression in young males peripheral blood mononuclear
074807 - cells. Clin. Transl. Sci. 2012;5:32?38. [PMC free
074808 - article] [PubMed]
074810 - ..
074811 - 337. Radom-Aizik S., Zaldivar F., Haddad F., Cooper D.M.
074812 - Impact of brief exercise on peripheral blood NK cell
074813 - gene and microRNA expression in young adults. J. Appl.
074814 - Physiol. 2013;114:628?636. [PMC free article] [PubMed]
074816 - ..
074817 - 338. Radom-Aizik S., Zaldivar F.P., Jr., Haddad F., Cooper
074818 - D.M. Impact of brief exercise on circulating monocyte
074819 - gene and microRNA expression: Implications for
074820 - atherosclerotic vascular disease. Brain Behav. Immun.
074821 - 2014;39:121?129. [PMC free article] [PubMed]
074823 - ..
074824 - 339. Tonevitsky A.G., Maltseva D.V., Abbasi A., Samatov
074825 - T.R., Sakharov D.A., Shkurnikov M.U., Lebedev A.E.,
074826 - Galatenko V.V., Grigoriev A.I., Northoff H.
074827 - Dynamically regulated mirna-mrna networks revealed by
074828 - exercise. BMC Physiol. 2013;13 doi:
074829 - 10.1186/1472-6793-13-9. [PMC free article] [PubMed]
074830 - [CrossRef]
074832 - ..
074833 - 340. Neves V.J., Fernandes T., Roque F.R., Soci U.P.R., Melo
074834 - S.F.S., de Oliveira E.M. Exercise training in
074835 - hypertension: Role of microRNAs. World J. Cardiol.
074836 - 2014;6:713?727. [PMC free article] [PubMed]
074838 - ..
074839 - 341. Kasiappan R., Shen Z., Tse A.K.-W., Jinwal U., Tang J.,
074840 - Lungchukiet P., Sun Y., Kruk P., Nicosia S.V., Zhang
074841 - X., et al. 1,25-dihydroxyvitamin D3 suppresses
074842 - telomerase expression and human cancer growth through
074843 - microRNA-498. J. Biol. Chem. 2012;287:41297?41309. [PMC
074844 - free article] [PubMed]
074846 - ..
074847 - 342. Castro-Vega L.J., Jouravleva K., Liu W.-Y., Martinez
074848 - C., Gestraud P., Hupé P., Servant N., Albaud B.,
074849 - Gentien D., Gad S., et al. Telomere crisis in kidney
074850 - epithelial cells promotes the acquisition of a microRNA
074851 - signature retrieved in aggressive renal cell
074852 - carcinomas. Carcinogenesis. 2013;34:1173?1180. [PubMed]
074854 - ..
074855 - 343. Buxton J.L., Suderman M., Pappas J.J., Borghol N.,
074856 - McArdle W., Blakemore A.I.F., Hertzman C., Power C.,
074857 - Szyf M., Pembrey M. Human leukocyte telomere length is
074858 - associated with DNA methylation levels in multiple
074859 - subtelomeric and imprinted loci. Sci. Rep. 2014;4:4954.
074860 - [PMC free article] [PubMed]
074862 - ..
074863 - 344. Wong J.Y.Y., De Vivo I., Lin X., Grashow R., Cavallari
074864 - J., Christiani D.C. The association between global DNA
074865 - methylation and telomere length in a longitudinal study
074866 - of boilermakers. Genet. Epidemiol. 2014;38:254?264.
074867 - [PMC free article] [PubMed]
074869 - ..
074870 - 345. Gonzalo S., Jaco I., Fraga M.F., Chen T., Li E.,
074871 - Esteller M., Blasco M.A. DNA methyltransferases control
074872 - telomere length and telomere recombination in mammalian
074873 - cells. Nat. Cell Biol. 2006;8:416?424. [PubMed]
074875 - ..
074876 - 346. Ng L.J., Cropley J.E., Pickett H.A., Reddel R.R., Suter
074877 - C.M. Telomerase activity is associated with an increase
074878 - in DNA methylation at the proximal subtelomere and a
074879 - reduction in telomeric transcription. Nucleic Acids
074880 - Res. 2009;37:1152?1159. [PMC free article] [PubMed]
074882 - ..
074883 - 347. Azzalin C.M., Reichenbach P., Khoriauli L., Giulotto
074884 - E., Lingner J. Telomeric repeat?containing rna and rna
074885 - surveillance factors at mammalian chromosome ends.
074886 - Science. 2007;318:798?801. [PubMed]
074888 - ..
074889 - 348. Schoeftner S., Blasco M.A. Developmentally regulated
074890 - transcription of mammalian telomeres by DNA-dependent
074891 - RNA polymerase II. Nat. Cell Biol. 2008;10:228?236.
074892 - [PubMed]
074894 - ..
074895 - 349. Deng Z., Norseen J., Wiedmer A., Riethman H., Lieberman
074896 - P.M. Terra rna binding to TRF2 facilitates
074897 - heterochromatin formation and orc recruitment at
074898 - telomeres. Mol. Cell. 2009;35:403?413. [PMC free
074899 - article] [PubMed]
074901 - ..
074902 - 350. Arora R., Lee Y., Wischnewski H., Brun C.M., Schwarz
074903 - T., Azzalin C.M. RNaseH1 regulates TERRA-telomeric DNA
074904 - hybrids and telomere maintenance in ALT tumour cells.
074905 - Nat. Commun. 2014;5:5220. [PMC free article] [PubMed]
074907 - ..
074908 - 351. Balk B., Maicher A., Dees M., Klermund J., Luke-Glaser
074909 - S., Bender K., Luke B. Telomeric RNA-DNA hybrids affect
074910 - telomere-length dynamics and senescence. Nat. Struct.
074911 - Mol. Biol. 2013;20:1199?1205. [PubMed]
074913 - ..
074914 - 352. Pfeiffer V., Crittin J., Grolimund L., Lingner J. The
074915 - tho complex component THP2 counteracts telomeric
074916 - R-loops and telomere shortening. EMBO J.
074917 - 2013;32:2861?2871. [PMC free article] [PubMed]
074919 - ..
074920 - 353. Yu T.-Y., Kao Y.-W., Lin J.-J. Telomeric transcripts
074921 - stimulate telomere recombination to suppress senescence
074922 - in cells lacking telomerase. Proc. Natl. Acad. Sci.
074923 - USA. 2014;111:3377?3382. [PMC free article] [PubMed]
074925 - ..
074926 - 354. Ginno P.A., Lott P.L., Christensen H.C., Korf I.,
074927 - Chédin F. R-loop formation is a distinctive
074928 - characteristic of unmethylated human cpg island
074929 - promoters. Mol. Cell. 2012;45:814?825. [PMC free
074930 - article] [PubMed]
074932 - ..
074933 - 355. Skourti-Stathaki K., Proudfoot N.J., Gromak N. Human
074934 - senataxin resolves RNA/DNA hybrids formed at
074935 - transcriptional pause sites to promote Xrn2-dependent
074936 - termination. Mol. Cell. 2011;42:794?805. [PMC free
074937 - article] [PubMed]
074939 - ..
074940 - 356. Arnoult N., Van Beneden A., Decottignies A. Telomere
074941 - length regulates terra levels through increased
074942 - trimethylation of telomeric H3K9 and HP1? Nat. Struct.
074943 - Mol. Biol. 2012;19:948?956. doi: 10.1038/nsmb.2364.
074944 - [PubMed] [CrossRef]
074946 - ..
074947 - 357. Cusanelli E., Romero C.A., Chartrand P. Telomeric
074948 - noncoding RNA terra is induced by telomere shortening
074949 - to nucleate telomerase molecules at short telomeres.
074950 - Mol. Cell. 2013;51:780?791. [PubMed]
074952 - ..
074953 - 358. Porro A., Feuerhahn S., Delafontaine J., Riethman H.,
074954 - Rougemont J., Lingner J. Functional characterization of
074955 - the terra transcriptome at damaged telomeres. Nat.
074956 - Commun. 2014;5:5379. [PMC free article] [PubMed]
074958 - ..
074959 - 359. Hansen M.E.B., Hunt S.C., Stone R.C., Horvath K.,
074960 - Herbig U., Ranciaro A., Hirbo J., Beggs W., Reiner
074961 - A.P., Wilson J.G., et al. Shorter telomere length in
074962 - europeans than in africans due to polygenetic
074963 - adaptation. Hum. Mol. Genet. 2016;25:2324?2330. doi:
074964 - 10.1093/hmg/ddw070. [PMC free article] [PubMed]
074965 - [CrossRef]
074967 - ..
074968 - 360. Mangino M., Christiansen L., Stone R., Hunt S.C.,
074969 - Horvath K., Eisenberg D.T.A., Kimura M., Petersen I.,
074970 - Kark J.D., Herbig U., et al. DCAF4, a novel gene
074971 - associated with leucocyte telomere length. J. Med.
074972 - Genet. 2015;52:157?162. doi:
074973 - 10.1136/jmedgenet-2014-102681. [PMC free article]
074974 - [PubMed] [CrossRef]
074976 - ..
074977 - 361. Stone R.C., Horvath K., Kark J.D., Susser E., Tishkoff
074978 - S.A., Aviv A. Telomere length and the
074979 - cancer?atherosclerosis trade-off. PLoS Genet.
074980 - 2016;12:e1006144 [PMC free article] [PubMed]
074982 - ..
074983 - 362. Berardinelli F., Nieri D., Sgura A., Tanzarella C.,
074984 - Antoccia A. Telomere loss, not average telomere length,
074985 - confers radiosensitivity to TK6-irradiated cells.
074986 - Mutat. Res. 2012;740:13?20. [PubMed]
074988 - ..
074989 - 363. Vera E., Bernardes de Jesus B., Foronda M., Flores
074990 - J.M., Blasco M.A. The rate of increase of short
074991 - telomeres predicts longevity in mammals. Cell Rep.
074992 - 2012;2:732?737. [PubMed]
074994 - ..
074995 - 364. Zhan Y., Karlsson I.K., Karlsson R., Tillander A.,
074996 - Reynolds C.A., Pedersen N.L., Hägg S. Exploring the
074997 - causal pathway from telomere length to coronary heart
074998 - disease: A network mendelian randomization study.
074999 - Circ. Res. 2017;121:214?219. [PubMed]
075000 -
075001 -
075002 -
075003 -
075004 -
075005 -
075006 -
075007 -
075008 -
075009 -
075010 -
0751 -